scholarly journals Maximal Newton polygons via the quantum Bruhat graph

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Elizabeth T. Beazley

International audience This paper discusses a surprising relationship between the quantum cohomology of the variety of complete flags and the partially ordered set of Newton polygons associated to an element in the affine Weyl group. One primary key to establishing this connection is the fact that paths in the quantum Bruhat graph, which is a weighted directed graph with vertices indexed by elements in the finite Weyl group, encode saturated chains in the strong Bruhat order on the affine Weyl group. This correspondence is also fundamental in the work of Lam and Shimozono establishing Peterson's isomorphism between the quantum cohomology of the finite flag variety and the homology of the affine Grassmannian. In addition, using some geometry associated to the poset of Newton polygons, one obtains independent proofs for several combinatorial statements about paths in the quantum Bruhat graph and its symmetries, which were originally proved by Postnikov using the tilted Bruhat order. An important geometric application of this work is an inequality which provides a necessary condition for non-emptiness of certain affine Deligne-Lusztig varieties in the affine flag variety. Cet article étudie une relation surprenante entre la cohomologie quantique de la variété de drapeaux complets et l'ensemble partiellement ordonné de polygones de Newton associé à un élément du groupe de Weyl affine. L’élément clé pour établir cette connexion est le fait que les chemins dans le graphe de Bruhat quantique, qui est un graphe orienté pondéré dont les sommets sont indexés par des éléments du groupe de Weyl fini, encodent des chaînes saturées dans l'ordre de Bruhat fort sur le groupe de Weyl affine. Cette correspondance est aussi fondamentale dans les travaux de Lam et Shimonozo qui établissent l'isomorphisme de Peterson entre la cohomologie quantique de la variété de drapeaux finie et l'homologie de la Grassmannienne affine. De plus, en utilisant la géométrie associée à l'ensemble partiellement ordonné des polygones de Newton, on obtient des preuves indépendantes pour plusieurs assertions combinatoires sur les chemins dans le graphe de Bruhat quantiques et les symétries de ce graphe, qui ont été originellement démontrées par Postnikov en utilisant l'ordre de Bruhat incliné. Une application géométrique importante de ce travail est une inégalité qui donne une condition nécessaire pour que certaines variétés de Deligne-Lusztig affines dans la variété de drapeaux affine soient non-vides.


2021 ◽  
Vol 28 (04) ◽  
pp. 541-554
Author(s):  
Ge Feng ◽  
Liping Wang

Let [Formula: see text] be the affine Weyl group of type [Formula: see text], on which we consider the length function [Formula: see text] from [Formula: see text] to [Formula: see text] and the Bruhat order [Formula: see text]. For [Formula: see text] in [Formula: see text], let [Formula: see text] be the coefficient of [Formula: see text] in Kazhdan–Lusztig polynomial [Formula: see text]. We determine some [Formula: see text] for [Formula: see text] and [Formula: see text], where [Formula: see text] is the lowest two-sided cell of [Formula: see text] and [Formula: see text] is the higher one. Furthermore, we get some consequences using left or right strings and some properties of leading coefficients.



2005 ◽  
Vol 48 (2) ◽  
pp. 203-230 ◽  
Author(s):  
Takao Suzuki


1988 ◽  
Vol 205 (2-3) ◽  
pp. 281-284 ◽  
Author(s):  
D. Altschüler ◽  
J. Lacki ◽  
Ph. Zaugg


2011 ◽  
Vol 63 (6) ◽  
pp. 1238-1253 ◽  
Author(s):  
Daniel Bump ◽  
Maki Nakasuji

AbstractW. Casselman defined a basis fu of Iwahori fixed vectors of a spherical representation of a split semisimple p-adic group G over a nonarchimedean local field F by the condition that it be dual to the intertwining operators, indexed by elements u of the Weyl group W. On the other hand, there is a natural basis , and one seeks to find the transition matrices between the two bases. Thus, let and . Using the Iwahori–Hecke algebra we prove that if a combinatorial condition is satisfied, then , where z are the Langlands parameters for the representation and α runs through the set S(u, v) of positive coroots (the dual root systemof G) such that with rα the reflection corresponding to α. The condition is conjecturally always satisfied if G is simply-laced and the Kazhdan–Lusztig polynomial Pw0v,w0u = 1 with w0 the long Weyl group element. There is a similar formula for conjecturally satisfied if Pu,v = 1. This leads to various combinatorial conjectures.



2016 ◽  
Vol 15 (10) ◽  
pp. 1650179 ◽  
Author(s):  
Yongjun Xu ◽  
Dingguo Wang ◽  
Jialei Chen

We focus on a class of filtered quantum algebras [Formula: see text] which are both coideal subalgebras of quantum groups and Poincaré–Birkhoff–Witt (PBW)-deformations of their negative parts. In [Y. Xu and S. Yang, PBW-deformations of quantum groups, J. Algebra 408 (2014) 222–249], Xu and Yang proved that braid group actions on [Formula: see text] introduced by Kolb and Pellegrini can be used to define root vectors and construct PBW bases for [Formula: see text]. In this present paper, for each element [Formula: see text] in the Weyl group of [Formula: see text] we first introduce a subspace [Formula: see text] and a subalgebra [Formula: see text] of [Formula: see text], where [Formula: see text] can be considered as an analogue of quantum Schubert cell algebra. Then a sufficient and necessary condition on [Formula: see text] is given for [Formula: see text]. Moreover, we prove that [Formula: see text] if and only if [Formula: see text] and [Formula: see text] can be generated by the same simple reflections. Finally, we characterize the algebra [Formula: see text] which can be obtained via an iterated Ore extension. Our results show that quantum groups and their PBW-deformations really have some different properties.



Sign in / Sign up

Export Citation Format

Share Document