modular invariant
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 32)

H-INDEX

30
(FIVE YEARS 5)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Tobias Hansen

Abstract We study the stress tensor four-point function for $$ \mathcal{N} $$ N = 4 SYM with gauge group G = SU(N), SO(2N + 1), SO(2N) or USp(2N) at large N . When G = SU(N), the theory is dual to type IIB string theory on AdS5× S5 with complexified string coupling τs, while for the other cases it is dual to the orbifold theory on AdS5× S5/ℤ2. In all cases we use the analytic bootstrap and constraints from localization to compute 1-loop and higher derivative tree level corrections to the leading supergravity approximation of the correlator. We give perturbative evidence that the localization constraint in the large N and finite complexified coupling τ limit can be written for each G in terms of Eisenstein series that are modular invariant in terms of τs ∝ τ, which allows us to fix protected terms in the correlator in that limit. In all cases, we find that the flat space limit of the correlator precisely matches the type IIB S-matrix. We also find a closed form expression for the SU(N) 1-loop Mellin amplitude with supergravity vertices. Finally, we compare our analytic predictions at large N and finite τ to bounds from the numerical bootstrap in the large N regime, and find that they are not saturated for any G and any τ , which suggests that no physical theory saturates these bootstrap bounds.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Diamantis

Abstract We construct an explicit family of modular iterated integrals which involves cusp forms. This leads to a new method of producing modular invariant functions based on iterated integrals of modular forms. The construction will be based on an extension of higher-order modular forms which, in contrast to the standard higher-order forms, applies to general Fuchsian groups of the first kind and, as such, is of independent interest.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Cai-Chang Li ◽  
Xiang-Gan Liu ◽  
Gui-Jun Ding

Abstract We propose to construct the finite modular groups from the quotient of two principal congruence subgroups as Γ(N′)/Γ(N″), and the modular group SL(2, ℤ) is ex- tended to a principal congruence subgroup Γ(N′). The original modular invariant theory is reproduced when N′ = 1. We perform a comprehensive study of $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry corresponding to N′ = 1 and N″ = 6, five types of models for lepton masses and mixing with $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry are discussed and some example models are studied numerically. The case of N′ = 2 and N″ = 6 is considered, the finite modular group is Γ(2)/Γ(6) ≅ T′, and a benchmark model is constructed.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hiroshi Okada ◽  
Yusuke Shimizu ◽  
Morimitsu Tanimoto ◽  
Takahiro Yoshida

Abstract We propose an A4 modular invariant flavor model of leptons, in which both CP and modular symmetries are broken spontaneously by the vacuum expectation value of the modulus τ. The value of the modulus τ is restricted by the observed lepton mixing angles and lepton masses for the normal hierarchy of neutrino masses. The predictive Dirac CP phase δCP is in the ranges [0°, 50°], [170°, 175°] and [280°, 360°] for Re [τ] < 0, and [0°, 80°], [185°, 190°] and [310°, 360°] for Re [τ] > 0. The sum of three neutrino masses is predicted in [60, 84] meV, and the effective mass for the 0νββ decay is in [0.003, 3] meV. The modulus τ links the Dirac CP phase to the cosmological baryon asymmetry (BAU) via the leptogenesis. Due to the strong wash-out effect, the predictive baryon asymmetry YB can be at most the same order of the observed value. Then, the lightest right-handed neutrino mass is restricted in the range of M1 = [1.5, 6.5] × 1013 GeV. We find the correlation between the predictive YB and the Dirac CP phase δCP. Only two predictive δCP ranges, [5°, 40°] (Re [τ] > 0) and [320°, 355°] (Re [τ] < 0) are consistent with the BAU.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Gui-Jun Ding ◽  
Ferruccio Feruglio ◽  
Xiang-Gan Liu

We analyze CP symmetry in symplectic modular-invariant supersymmetric theories. We show that for genus g\ge 3g≥3 the definition of CP is unique, while two independent possibilities are allowed when g\le 2g≤2. We discuss the transformation properties of moduli, matter multiplets and modular forms in the Siegel upper half plane, as well as in invariant subspaces. We identify CP-conserving surfaces in the fundamental domain of moduli space. We make use of all these elements to build a CP and symplectic invariant model of lepton masses and mixing angles, where known data are well reproduced and observable phases are predicted in terms of a minimum number of parameters.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Ville Lahtinen ◽  
Teresia Mansson ◽  
Eddy Ardonne

We construct local generalizations of 3-state Potts models with exotic critical points. We analytically show that these are described by non-diagonal modular invariant partition functions of products of Z_3Z3 parafermion or u(1)_6u(1)6 conformal field theories (CFTs). These correspond either to non-trivial permutation invariants or block diagonal invariants, that one can understand in terms of anyon condensation. In terms of lattice parafermion operators, the constructed models correspond to parafermion chains with many-body terms. Our construction is based on how the partition function of a CFT depends on symmetry sectors and boundary conditions. This enables to write the partition function corresponding to one modular invariant as a linear combination of another over different sectors and boundary conditions, which translates to a general recipe how to write down a microscopic model, tuned to criticality. We show that the scheme can also be extended to construct critical generalizations of kk-state clock type models.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ferruccio Feruglio ◽  
Valerio Gherardi ◽  
Andrea Romanino ◽  
Arsenii Titov

Abstract We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point τ = i, where modular invariant theories possess a residual Z4 invariance. In this region the breaking of Z4 can be fully described by the spurion ϵ ≈ τ − i, that flips its sign under Z4. Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the Z4 symmetry at τ = i, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of |ϵ|. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepton sector, even in the presence of a non-minimal Kähler potential.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Chang-Yuan Yao ◽  
Jun-Nan Lu ◽  
Gui-Jun Ding

Abstract We perform a systematical analysis of the A4 modular models with generalized CP for the masses and flavor mixing of quarks and leptons, and the most general form of the quark and lepton mass matrices is given. The CP invariance requires all couplings real in the chosen basis and thus the vacuum expectation value of the modulus τ uniquely breaks both the modular symmetry and CP symmetry. The phenomenologically viable models with minimal number of free parameters and the results of fit are presented. We find 20 models with 7 real free parameters that can accommodate the experimental data of lepton sector. We then apply A4 modular symmetry to the quark sector to explain quark masses and CKM mixing matrix, the minimal viable quark model is found to contain 10 free real parameters. Finally, we give two predictive quark-lepton unification models which use only 16 real free parameters to explain the flavor patterns of both quarks and leptons.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2∗ theory with respect to the squashing parameter b and mass parameter m, evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1/N expansion, these fourth derivatives are modular invariant functions of (τ,$$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1/N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1/N, they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS5× S5.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Viraj Meruliya ◽  
Sunil Mukhi ◽  
Palash Singh

Abstract We investigate the Poincaré series approach to computing 3d gravity partition functions dual to Rational CFT. For a single genus-1 boundary, we show that for certain infinite sets of levels, the SU(2)k WZW models provide unitary examples for which the Poincaré series is a positive linear combination of two modular-invariant partition functions. This supports the interpretation that the bulk gravity theory (a topological Chern-Simons theory in this case) is dual to an average of distinct CFT’s sharing the same Kac-Moody algebra. We compute the weights of this average for all seed primaries and all relevant values of k. We then study other WZW models, notably SU(N)1 and SU(3)k, and find that each class presents rather different features. Finally we consider multiple genus-1 boundaries, where we find a class of seed functions for the Poincaré sum that reproduces both disconnected and connected contributions — the latter corresponding to analogues of 3-manifold “wormholes” — such that the expected average is correctly reproduced.


Sign in / Sign up

Export Citation Format

Share Document