scholarly journals Branching processes in random environment die slowly

2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Vladimir Vatutin ◽  
Andreas Kyprianou

International audience Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the left-most point of minimum of $\{S_k,k \geq 0 \}$ on the interval $[m,n]$, and $T=\min \{ k:Z_k=0\}$. Assuming that the associated random walk satisfies the Doney condition $P(S_n > 0) \to \rho \in (0,1), n \to \infty$, we prove (under the quenched approach) conditional limit theorems, as $n \to \infty$, for the distribution of $Z_{nt}, Z_{\tau (0,nt)}$, and $Z_{\tau (nt,n)}, t \in (0,1)$, given $T=n$. It is shown that the form of the limit distributions essentially depends on the location of $\tau (0,n)$ with respect to the point $nt$.

1977 ◽  
Vol 14 (3) ◽  
pp. 451-463 ◽  
Author(s):  
P. J. Green

In this paper we generalise the so-called Yaglom conditional limit theorems to the general branching process counted by the values of a random characteristic, as suggested by Jagers (1974). Even when restricted to the special case of the usual population-size process, our results are stronger than those previously available.


1991 ◽  
Vol 4 (4) ◽  
pp. 263-292 ◽  
Author(s):  
Lajos Takács

Let [ξ(m),m=0,1,2,…] be a branching process in which each individual reproduces independently of the others and has probability pj(j=0,1,2,…) of giving rise to j descendants in the following generation. The random variable ξ(m) is the number of individuals in the mth generation. It is assumed that P{ξ(0)=1}=1. Denote by ρ the total progeny, μ, the time of extinction, and τ, the total number of ancestors of all the individuals in the process. This paper deals with the distributions of the random variables ξ(m), μ and τ under the condition that ρ=n and determines the asymptotic behavior of these distributions in the case where n→∞ and m→∞ in such a way that m/n tends to a finite positive limit.


1977 ◽  
Vol 14 (03) ◽  
pp. 451-463 ◽  
Author(s):  
P. J. Green

In this paper we generalise the so-called Yaglom conditional limit theorems to the general branching process counted by the values of a random characteristic, as suggested by Jagers (1974). Even when restricted to the special case of the usual population-size process, our results are stronger than those previously available.


1973 ◽  
Vol 10 (1) ◽  
pp. 39-53 ◽  
Author(s):  
A. G. Pakes

The present work considers a left-continuous random walk moving on the positive integers and having an absorbing state at the origin. Limit theorems are derived for the position of the walk at time n given: (a) absorption does not occur until after n, or (b) absorption does not occur until after m + n where m is very large, or (c) absorption occurs at m + n. A limit theorem is given for an R-positive recurrent Markov chain on the non-negative integers with an absorbing origin and subject to condition (c) above.


1973 ◽  
Vol 10 (01) ◽  
pp. 39-53 ◽  
Author(s):  
A. G. Pakes

The present work considers a left-continuous random walk moving on the positive integers and having an absorbing state at the origin. Limit theorems are derived for the position of the walk at time n given: (a) absorption does not occur until after n, or (b) absorption does not occur until after m + n where m is very large, or (c) absorption occurs at m + n. A limit theorem is given for an R-positive recurrent Markov chain on the non-negative integers with an absorbing origin and subject to condition (c) above.


1978 ◽  
Vol 15 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Anthony G. Pakes

In a recent paper Green (1976) obtained some conditional limit theorems for the absorption time of left-continuous random walk. His methods require that in the driftless case the increment distribution has exponentially decreasing tails and that the same is true for a transformed distribution in the case of negative drift.Here we take a different approach which will produce Green's results under minimal conditions. Limit theorems are given for the maximum as the initial position of the random walk tends to infinity.


2014 ◽  
Vol 24 (5) ◽  
Author(s):  
Valeriy I. Afanasyev

AbstractThe paper is concerned with subcritical branching process in random environment. It is assumed that the moment-generating function of steps of the associated random walk is equal to 1 for some positive value of the argument. Functional limit theorems for sizes of various generations and passage times to various levels are put forward.


1984 ◽  
Vol 21 (3) ◽  
pp. 447-463 ◽  
Author(s):  
Olle Nerman

The asymptotic sizes and compositions of critical general branching processes conditioned on non-extinction are treated. First, results are given for processes counted with random characteristics allowed to depend on the whole daughter processes, then these are used to derive conditional limit theorems for the pedigrees of randomly sampled individuals among populations counted with 0–1-valued characteristics. The limiting stable pedigrees have nice independence structures and are easily derived from the original branching laws.


Sign in / Sign up

Export Citation Format

Share Document