moment generating function
Recently Published Documents


TOTAL DOCUMENTS

454
(FIVE YEARS 159)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 6 (2) ◽  
pp. 107-116
Author(s):  
Adewunmi Olaniran Adeyemi ◽  
Eno Emmanuella Akarawak ◽  
Ismail Adedeji Adeleke

Many existing distributions in literatures does not have the modeling fits capacity to adequately describe the real-life phenomena. The Exponential Pareto (EP) distribution has further gained some generalizations among several authors using different generator techniques with an aim to obtain a new distribution with greater flexibility. This article proposes Gompertz Exponential Pareto (GEP) distribution using the Gompertz generator. Findings from the study revealed some lifetime distributions as special cases and mathematical properties of the distribution investigated including the mean, variance, coefficient of variation, quantile, moment, moment generating function and, order statistics. The distribution can be positively or negatively skewed. It is unimodal with failure rates whose shapes could be reversed J bathtub, constant, decreasing and, increasing and the parameters were estimated using maximum likelihood estimation approach. Applications to two real-life datasets revealed the ability of GEP distribution to provide more flexibilities and better fit to the dataset compared to some previously proposed distributions for the data. The results also revealed that GEP had the superior performance over other generalizations of EP distribution existing in literatures and the performance has further strengthened the usefulness of the Gompertz-generator technique.


2021 ◽  
Vol 26 (4) ◽  
pp. 82
Author(s):  
Farrukh Jamal ◽  
Ali H. Abuzaid ◽  
Muhammad H. Tahir ◽  
Muhammad Arslan Nasir ◽  
Sadaf Khan ◽  
...  

In this article, Burr III distribution is proposed with a significantly improved functional form. This new modification has enhanced the flexibility of the classical distribution with the ability to model all shapes of hazard rate function including increasing, decreasing, bathtub, upside-down bathtub, and nearly constant. Some of its elementary properties, such as rth moments, sth incomplete moments, moment generating function, skewness, kurtosis, mode, ith order statistics, and stochastic ordering, are presented in a clear and concise manner. The well-established technique of maximum likelihood is employed to estimate model parameters. Middle-censoring is considered as a modern general scheme of censoring. The efficacy of the proposed model is asserted through three applications consisting of complete and censored samples.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zahid Khan ◽  
Afrah Al-Bossly ◽  
Mohammed M. A. Almazah ◽  
Fuad S. Alduais

In the absence of a correct distribution theory for complex data, neutrosophic algebra can be very useful in quantifying uncertainty. In applied data analysis, implementation of existing gamma distribution becomes inadequate for some applications when dealing with an imprecise, uncertain, or vague dataset. Most existing works have explored distributional properties of the gamma distribution under the assumption that data do not have any kind of indeterminacy. Yet, analytical properties of the gamma model for the more realistic setting when data involved uncertainties remain largely underdeveloped. This paper fills such a gap and develops the notion of neutrosophic gamma distribution (NGD). The proposed distribution represents a generalized structure of the existing gamma distribution. The basic distributional properties, including moments, shape coefficients, and moment generating function (MGF), are established. Several examples are considered to emphasize the relevance of the proposed NGD for dealing with circumstances with inadequate or ambiguous knowledge about the distributional characteristics. The estimation framework for treating vague parameters of the NGD is developed. The Monte Carlo simulation is implemented to examine the performance of the proposed model. The proposed model is applied to a real dataset for the purpose of dealing with inaccurate and vague statistical data. Results show that the NGD has better flexibility in handling real data over the conventional gamma distribution.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Vandana Palsaniya ◽  
Ekta Mittal ◽  
Sunil Joshi ◽  
D. L. Suthar

The purpose of this research is to provide a systematic review of a new type of extended beta function and hypergeometric function using a confluent hypergeometric function, as well as to examine various belongings and formulas of the new type of extended beta function, such as integral representations, derivative formulas, transformation formulas, and summation formulas. In addition, we also investigate extended Riemann–Liouville (R-L) fractional integral operator with associated properties. Furthermore, we develop new beta distribution and present graphically the relation between moment generating function and ℓ .


Author(s):  
Nelson Doe Dzivor ◽  
Henry Otoo ◽  
Eric Neebo Wiah

The quest to improve on flexibility of probability distributions motivated this research. Four-parameter Janardan generalized distribution known as Kumaraswamy-Janardan distribution is proposed through method of parameterization and studied. The probability density function, cumulative density function, survival rate function as well as hazard rate function of the distribution are established. Statistical properties such as moments, moment generating function as well as maximum likelihood of the model are discussed. The parameters are estimated using the simulated annealing optimization algorithm.   Flexibility of the model in comparison with the baseline model as well as other competing sub-models is verified using Akaike Information Criteria (AIC). The model is tested with real data and is proven to be more flexible in fitting real data than any of its sub-models considered. 


Author(s):  
Wahid A. M. Shehata ◽  
Haitham Yousof ◽  
Mohamed Aboraya

This paper presents a novel two-parameter G family of distributions. Relevant statistical properties such as the ordinary moments, incomplete moments and moment generating function are derived.  Using common copulas, some new bivariate type G families are derived. Special attention is devoted to the standard exponential base line model. The density of the new exponential extension can be “asymmetric and right skewed shape” with no peak, “asymmetric right skewed shape” with one peak, “symmetric shape” and “asymmetric left skewed shape” with one peak. The hazard rate of the new exponential distribution can be “increasing”, “U-shape”, “decreasing” and “J-shape”. The usefulness and flexibility of the new family is illustrated by means of two applications to real data sets. The new family is compared with many common G families in modeling relief times and survival times data sets.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
R. G. M. Rodrigues ◽  
B. V. Costa ◽  
L. A. S. Mól

Author(s):  
Thatayaone Moakofi ◽  
Broderick Oluyede ◽  
Fastel Chipepa

This paper aims to develop a new class of distributions, namely, type II exponentiated half-logistic Topp-Leone power series (TIIEHL-TL-GPS) class of distributions. Some important properties including moments, quantiles, moment generating function, entropy and maximum likelihood estimates are derived. A simulation is conducted study to evaluate the consistency of the maximum likelihood estimates. We also present three real data examples to illustrate the usefulness of the new class of distributions. Results shows that the proposed model performs better than nested and several non-nested models on selected data sets


2021 ◽  
Vol 2 ◽  
pp. 2
Author(s):  
Femi Samuel Adeyinka

This article investigates the T-X class of Topp Leone- G family of distributions. Some members of the new family are discussed.  The exponential-Topp Leone-exponential distribution (ETLED) which is one of the members of the family is derived and some of its properties which include central and non-central moments, quantiles, incomplete moments, conditional moments, mean deviation, Bonferroni and Lorenz curves, survival and hazard functions, moment generating function, characteristic function and R`enyi entropy are established. The probability density function (pdf) of order statistics of the model is obtained and the parameter estimation is addressed with the maximum likelihood method (MLE). Three real data sets are used to demonstrate its application and the results are compared with two other models in the literature.


Author(s):  
Oseghale O. I. ◽  
Akomolafe A. A. ◽  
Gayawan E.

This work is focused on the four parameters Exponentiated Cubic Transmuted Weibull distribution which mostly found its application in reliability analysis most especially for data that are non-monotone and Bi-modal. Structural properties such as moment, moment generating function, Quantile function, Renyi entropy, and order statistics were investigated. The maximum likelihood estimation technique was used to estimate the parameters of the distribution. Application to two real-life data sets shows the applicability of the distribution in modeling real data.


Sign in / Sign up

Export Citation Format

Share Document