scholarly journals RULED SURFACES AND TANGENT BUNDLE OF PSEUDO-SPHERE OF NATURAL LIFT CURVES

2020 ◽  
Vol 20 (3) ◽  
pp. 573-586
Author(s):  
EMEL KARACA ◽  
MUSTAFA CALISKAN

In this article, firstly, the isomorphism between the subset of the tangent bundle of Lorentzian unit sphere, TM, and Lorentzian unit sphere, S12 is represented. Secondly, the isomorphism between the subset of hyperbolic unit sphere, TM, and hyperbolic unit sphere, H2 is given. According to E. Study mapping, any curve on S12 or H2 corresponds to a ruled surface in R13. By constructing these isomorphisms, we correspond to any natural lift curve on TM or TM a unique ruled surface in R13. Then we calculate striction curve, shape operator, Gaussian curvature and mean curvature of these ruled surfaces. We give developability condition of these ruled surfaces. Finally, we give examples to support the main results.

2006 ◽  
Vol 37 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Dae Won Yoon

In this paper, we mainly investigate non developable ruled surface in a 3-dimensional Euclidean space satisfying the equation $K_{II} = KH$ along each ruling, where $K$ is the Gaussian curvature, $H$ is the mean curvature and $K_{II}$ is the second Gaussian curvature.


2021 ◽  
Vol 29 (1) ◽  
pp. 219-233
Author(s):  
Neslihan Ulucan ◽  
Mahmut Akyigit

Abstract In this paper, offset ruled surfaces in these spaces are defined by using the geometry of ruled surfaces in Euclidean space with density. The mean curvature and Gaussian curvature of these surfaces are studied. In addition, the relationships between the mean curvature and mean curvature with density, and the Gaussian curvature and the Gaussian curvature with density of the offset ruled surfaces in E 3 with density e z and e − x 2− y 2 are given.


2003 ◽  
Vol 34 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Rashad A. Abdel Baky

In this paper using E. Study map and the Blaschke approach we studied a ruled surface as a curve on the dual unit sphere. The Blaschke approach proceeds by defining a sequence of ruled surfaces associated with the ruled surface. The relative positions of these surfaces and their distribution parameters characterize the local properties of the original surface. A necessary condition for a ruled surface to be closed is derived. Moreover, an example of application is investigated in detail.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 931 ◽  
Author(s):  
Jinhua Qian ◽  
Xueshan Fu ◽  
Seoung Dal Jung

In this work, a family of ruled surfaces named generalized null scrolls in Minkowski 3-space are investigated via the defined structure functions. The relations between the base curve and the ruling flow of the generalized null scroll are revealed. The Gaussian curvature, mean curvature, second Gaussian curvature and the second mean curvature are given and related to each other. Last but not least, the generalized null scrolls whose base curves are k-type null helices are discussed and several examples are presented.


2017 ◽  
Vol 14 (10) ◽  
pp. 1750145 ◽  
Author(s):  
F. Hathout ◽  
M. Bekar ◽  
Y. Yayli

In this paper, a one-to-one correspondence is given between the tangent bundle of unit 2-sphere, [Formula: see text], and the unit dual sphere, [Formula: see text]. According to Study’s map, to each curve on [Formula: see text] corresponds a ruled surface in Euclidean 3-space, [Formula: see text]. Through this correspondence, we have corresponded to each curve on [Formula: see text] a unique ruled surface in [Formula: see text]. Moreover, the relationships between the developability conditions of these ruled surfaces and their striction curves are analyzed. It is shown that the ruled surfaces corresponding to the involute–evolute curve couples on [Formula: see text] are developable.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 403-411
Author(s):  
Abdussamet Caliskan ◽  
Süleyman Şenyurt

In this paper, the ruled surface which corresponds to a curve on dual unit sphere is rederived with the help of dual spatial quaternions. We extend the term of dual expression of ruled surface using dual spatial quaternionic method. The correspondences in dual space of closed ruled surfaces are quaternionically expressed. As a consequence, the integral invariants of these surfaces and the relationships between these invariants are shown


2020 ◽  
Vol 28 (3) ◽  
pp. 229-240
Author(s):  
Željka Milin Šipuš ◽  
Ljiljana Primorac Gajčić ◽  
Ivana Protrka

AbstractIn Lorentz-Minkowski 3-space, null scrolls are ruled surfaces with a null base curve and null rulings. Their mean, as well as their Gaussian curvature, depends only on a parameter of a base curve. In the present paper, we obtain the first-order nonlinear differential equation (Riccati equation) which relates curvatures of a base curve to curvatures of a null scroll. Conditioned by this equation, we can determine a family of null scrolls with a given null base curve and prescribed curvatures, in particular, a family of minimal and constant mean curvature null scrolls.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850068 ◽  
Author(s):  
Ahmad Tawfik Ali

We study the non-lightlike ruled surfaces in Minkowski 3-space with non-lightlike base curve [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] are the tangent, principal normal and binormal vectors of an arbitrary timelike curve [Formula: see text]. Some important results of flat, minimal, II-minimal and II-flat non-lightlike ruled surfaces are studied. Finally, the following interesting theorem is proved: the only non-zero constant mean curvature (CMC) non-lightlike ruled surface is developable timelike ruled surface generated by binormal vector.


Author(s):  
Lei Cui ◽  
Jian S Dai ◽  
Chung-Ching Lee

This paper applies Euclidean invariants from differential geometry to kinematic properties of the ruled surfaces generated by the coupler link and the constraint-screw axes. Starting from investigating the assembly configuration, the work reveals two cycle phases of the coupler link when the input link finishes a full rotation. This leads to analysis of the motion ruled surface generated by the directrix along the coupler link, where Euclidean invariants are obtained and singularities are identified. This work further presents the constraint ruled surface that is generated by the constraint screw axes and unveils its intrinsic characteristics.


2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
Cumali Ekici ◽  
Yasin Ünlütürk ◽  
Mustafa Dede ◽  
B. S. Ryuh

The trajectory of a robot end-effector is described by a ruled surface and a spin angle about the ruling of the ruled surface. In this way, the differential properties of motion of the end-effector are obtained from the well-known curvature theory of a ruled surface. The curvature theory of a ruled surface generated by a line fixed in the end-effector referred to as the tool line is used for more accurate motion of a robot end-effector. In the present paper, we first defined tool trihedron in which tool line is contained for timelike ruled surface with timelike ruling, and transition relations among surface trihedron: tool trihedron, generator trihedron, natural trihedron, and Darboux vectors for each trihedron, were found. Then differential properties of robot end-effector's motion were obtained by using the curvature theory of timelike ruled surfaces with timelike ruling.


Sign in / Sign up

Export Citation Format

Share Document