scholarly journals On Motion of Robot End-Effector Using the Curvature Theory of Timelike Ruled Surfaces with Timelike Rulings

2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
Cumali Ekici ◽  
Yasin Ünlütürk ◽  
Mustafa Dede ◽  
B. S. Ryuh

The trajectory of a robot end-effector is described by a ruled surface and a spin angle about the ruling of the ruled surface. In this way, the differential properties of motion of the end-effector are obtained from the well-known curvature theory of a ruled surface. The curvature theory of a ruled surface generated by a line fixed in the end-effector referred to as the tool line is used for more accurate motion of a robot end-effector. In the present paper, we first defined tool trihedron in which tool line is contained for timelike ruled surface with timelike ruling, and transition relations among surface trihedron: tool trihedron, generator trihedron, natural trihedron, and Darboux vectors for each trihedron, were found. Then differential properties of robot end-effector's motion were obtained by using the curvature theory of timelike ruled surfaces with timelike ruling.

Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 791-802
Author(s):  
Burak Sahiner ◽  
Mustafa Kazaz ◽  
Hasan Ugurlu

In this paper we study the motion of a robot end-effector by using the curvature theory of a dual unit hyperbolic spherical curve which corresponds to a timelike ruled surface with timelike ruling generated by a line fixed in the end-effector. In this way, the linear and angular differential properties of the motion of a robot end-effector such as velocities and accelerations which are important information in robot trajectory planning are determined. Moreover, the motion of a robot end-effector which moves on the surface of a right circular hyperboloid of one sheet is examined as a practical example.


1990 ◽  
Vol 112 (3) ◽  
pp. 377-383 ◽  
Author(s):  
B. S. Ryuh ◽  
G. R. Pennock

The trajectory of a robot end-effector is completely described by a ruled surface and a spin angle about the ruling of the ruled surface. In this way the differential properties of motion of the end-effector are obtained from the well-known curvature theory of a ruled surface. The robot can then be programmed so that the end-effector will follow the prescribed trajectory with high accuracy. In the case where the ruled surface cannot be described by an explicit analytic function, the ruled surface may be represented by a geometric modeling technique. Since a ruled surface can be expressed in terms of a single parameter, a curve generating technique is used to represent the ruled surface. The technique presented in this paper is the Ferguson curve model which guarantees that the trajectory will pass through all of the set points and will have curvature continuity at each set point. To illustrate the proposed method of robot trajectory planning, a practical example is included in the paper.


1988 ◽  
Vol 110 (4) ◽  
pp. 383-388 ◽  
Author(s):  
B. S. Ryuh ◽  
G. R. Pennock

In robotics, there are two methods of trajectory planning: the joint interpolation method which is appropriate for fast transition of the robot end-effector; and the cartesian interpolation method which is appropriate for slower motion of the end-effector along straight path segments. Neither method, however, is sufficient to allow a smooth, differentiable, transition of position and orientation of the end-effector. In this paper, we propose a method of trajectory planning that will permit more accurate motion of a robot end-effector. The method is based on the curvature theory of a ruled surface generated by a line fixed in the end-effector, referred to as the tool line. The orientation of the end-effector about the tool line is included in the analysis to completely describe the six degree-of-freedom motion of the end-effector. The linear and angular properties of motion of the end-effector, determined from the differential properties of the ruled surface, are utilized in the trajectory planning.


Author(s):  
B. S. Ryuh ◽  
G. R. Pennock

Abstract The trajectory of a robot end-effector is completely described by a ruled surface and a spin angle about the ruling of the ruled surface. In this way the differential properties of motion of the end-effector are obtained from the well-known curvature theory of a ruled surface. The robot can then be programmed so that the end-effector will follow the prescribed trajectory with high accuracy. In the case where the ruled surface can not be described by an explicit analytic function, the ruled surface may be represented by a geometric modeling technique. Since a ruled surface can be expressed in terms of a single parameter, a curve generating technique is used to represent the ruled surface. The technique presented in this paper is the Ferguson curve model which guarantees that the trajectory will pass through all of the set points and will have curvature continuity at each set point. To illustrate the proposed method of robot trajectory planning, a practical example is included in the paper.


Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 4061-4069
Author(s):  
Fatma Güler

The ruled surface is formed by the movement of a director based on a curve. The point P not on the director vector at fixed frame o-ijk draws a curve. However, each position of this point on the curve always corresponds to position of director on the ruled surface, or this point is adjoint to director vector. Thus, the curve is adjoint to the ruled surface. In this study, we expressed the adjoint trajectory of robot end effector. We can change the trajectory of the robot movement by defining the adjoint trajectory when it may not be physically achievable and not re-computation of the robot trajectory. We investigated the angular acceleration and angular velocity of adjoint trajectory of the robot end effector. Also, we obtained the condition that moving point is a fixed point.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550127 ◽  
Author(s):  
Mehmet Önder ◽  
Zehra Ekinci

Timelike ruled surfaces are studied in dual Lorentzian space [Formula: see text] by considering E. Study Mapping and Blaschke frame. A reference timelike ruled surface is considered and associated surfaces are defined. First, it is shown that the surface generated by the instantaneous screw axis (ISA) is a Mannheim offset of reference surface. Later, the kinematic interpretations between these surfaces are introduced by means of Blaschke invariants.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Mehmet Önder ◽  
H. Hüseyin Uğurlu

In this paper, we give the characterizations for Mannheim offsets of timelike ruled surfaces with spacelike rulings in dual Lorentzian space [Formula: see text]. We obtain the relations between terms of their integral invariants and also we give new characterization for the Mannheim offsets of developable timelike ruled surface. Moreover, we find relations between the area of projections of spherical images for Mannheim offsets of timelike ruled surfaces and their integral invariants.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850048 ◽  
Author(s):  
Fatma Güler ◽  
Emin Kasap

Using the curvature theory for the ruled surfaces a technique for robot trajectory planning is presented. This technique ensures the calculation of robot’s next path. The positional variation of the Tool Center Point (TCP), linear velocity, angular velocity are required in the work area of the robot. In some circumstances, it may not be physically achievable and a re-computation of the robot trajectory might be necessary. This technique is suitable for re-computation of the robot trajectory. We obtain different robot trajectories which change depending on the darboux angle function and define trajectory ruled surface family with a common trajectory curve with the rotation trihedron. Also, the motion of robot end effector is illustrated with examples.


1987 ◽  
Vol 109 (1) ◽  
pp. 101-106 ◽  
Author(s):  
J. M. McCarthy

The curvature theory of ruled surfaces has been studied in two different ways. The scalar formulation proceeds by defining a seqeunce of ruled surfaces associated with the trajectory ruled surface. The relative positions of these surfaces and their distribution parameters characterize the local properties of the original ruled surface. The other formulation uses dual vector algebra to transform the differential geometry of ruled surfaces into that of spherical curves. In each theory functions are obtained which characterize the shape of the ruled surface. This paper unites these formulations by deriving formulas relating the scalar and dual curvature functions. This provides the ability to compute either set of curvature properties from either the scalar or dual vector representation of the ruled surface. The ruled surface generated by a line fixed in a body undergoing a screw displacement is examined in detail.


Sign in / Sign up

Export Citation Format

Share Document