scholarly journals Determining the rank of a number in the residue number system

2021 ◽  
Author(s):  
M. Babenko ◽  
N. Kucherov ◽  
A. Tchernykh ◽  
V. Kuchukov ◽  
E. Golimblevskaia ◽  
...  

In this article, the formulation and proof of the theorem on the difference in the ranks of the numbers represented in the Residue Number System is carried out. A method is proposed that allows to reduce the amount of necessary calculations and increases the speed of calculating the rank of a number relative to the method for calculating the rank of a number based on the approximate method. To find the rank of a number in the method for calculating the rank of a number based on the approximate method, it is necessary to calculate n operations with numbers exceeding the modulus value; in the proposed method, it is necessary to calculate n·(n−1)/2 operations not exceeding the value of the module.

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Mikhail Babenko ◽  
Andrei Tchernykh ◽  
Viktor Kuchukov

The residue number system (RNS) is widely used in different areas due to the efficiency of modular addition and multiplication operations. However, non-modular operations, such as sign and division operations, are computationally complex. A fractional representation based on the Chinese remainder theorem is widely used. In some cases, this method gives an incorrect result associated with round-off calculation errors. In this paper, we optimize the division operation in RNS using the Akushsky core function without critical cores. We show that the proposed method reduces the size of the operands by half and does not require additional restrictions on the divisor as in the division algorithm in RNS based on the approximate method.


2017 ◽  
Vol 8 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Jean-Claude Bajard ◽  
Julien Eynard ◽  
Nabil Merkiche

Author(s):  
Mikhail Selianinau

AbstractIn this paper, we deal with the critical problem of performing non-modular operations in the Residue Number System (RNS). The Chinese Remainder Theorem (CRT) is widely used in many modern computer applications. Throughout the article, an efficient approach for implementing the CRT algorithm is described. The structure of the rank of an RNS number, a principal positional characteristic of the residue code, is investigated. It is shown that the rank of a number can be represented by a sum of an inexact rank and a two-valued correction to it. We propose a new variant of minimally redundant RNS, which provides low computational complexity for the rank calculation, and its effectiveness analyzed concerning conventional non-redundant RNS. Owing to the extension of the residue code, by adding the excess residue modulo 2, the complexity of the rank calculation goes down from $O\left (k^{2}\right )$ O k 2 to $O\left (k\right )$ O k with respect to required modular addition operations and lookup tables, where k equals the number of non-redundant RNS moduli.


Sign in / Sign up

Export Citation Format

Share Document