scholarly journals A NEW VECTOR QUANTIZATION APPROACH FOR DISCRETE HMM SPEECH RECOGNITION SYSTEM

2014 ◽  
pp. 72-78
Author(s):  
Mohamed Debyeche ◽  
Jean Paul Haton ◽  
Amrane Houacine

In order to address accuracy issues of discrete Hidden Markov Models (HMMs), in this paper, a new vector quantization (VQ) approach is presented. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMMbased baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.

2022 ◽  
pp. 629-647
Author(s):  
Yosra Abdulaziz Mohammed

Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.


Sign in / Sign up

Export Citation Format

Share Document