An off-line oriental character recognition system (OOCRS): synergy of distortion modeling, hidden Markov models and vector quantization

2002 ◽  
Vol 35 (5) ◽  
pp. 1007-1023
Author(s):  
Khue Hiang Chan
2014 ◽  
pp. 72-78
Author(s):  
Mohamed Debyeche ◽  
Jean Paul Haton ◽  
Amrane Houacine

In order to address accuracy issues of discrete Hidden Markov Models (HMMs), in this paper, a new vector quantization (VQ) approach is presented. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMMbased baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.


Author(s):  
J.C. ANIGBOGU ◽  
A. BELAÏD

A multi-level multifont character recognition is presented. The system proceeds by first delimiting the context of the characters. As a way of enhancing system performance, typographical information is extracted and used for font identification before actual character recognition is performed. This has the advantage of sure character identification as well as text reproduction in its original form. The font identification is based on decision trees where the characters are automatically arranged differently in confusion classes according to the physical characteristics of fonts. The character recognizers are built around the first and second order hidden Markov models (HMM) as well as Euclidean distance measures. The HMMs use the Viterbi and the Extended Viterbi algorithms to which enhancements were made. Also present is a majority-vote system that polls the other systems for “advice” before deciding on the identity of a character. Among other things, this last system is shown to give better results than each of the other systems applied individually. The system finally uses combinations of stochastic and dictionary verification methods for word recognition and error-correction.


Sign in / Sign up

Export Citation Format

Share Document