scholarly journals Optimization of Aeolus Optical Properties Products by Maximum-Likelihood Estimation

2021 ◽  
Author(s):  
Frithjof Ehlers ◽  
Thomas Flament ◽  
Alain Dabas ◽  
Dimitri Trapon ◽  
Adrien Lacour ◽  
...  

Abstract. The European Space Agency (ESA) Earth Explorer Mission, Aeolus, was launched in August 2018 and embarks the first Doppler Wind Lidar in space. Its primary payload, the Aeolus LAser Doppler INstrument (Aladin) is a Ultra Violet (UV) High Spectral Resolution Lidar (HSRL) measuring atmospheric backscatter from air molecules and particles in two separate channels. The primary mission product is globally distributed line-of-sight wind profile observations in the troposphere and lower stratosphere. Atmospheric optical properties are provided as a spin-off product. Being and HSRL, Aeolus is able to independently measure the particle extinction coefficients, co-polarized particle backscatter coefficients and the co-polarized lidar ratio. This way, the retrieval is independent of a-priori information. The optical properties are retrieved using the Standard Correct Algorithm (SCA), which is an algebraic inversion scheme to a (partly) ill-posed problem and therefore sensitive to measurement noise. In this work, we rephrase the SCA into a physically constrained Maximum Likelihood Estimation (MLE) problem and demonstrate predominantly positive impact and considerable noise suppression capabilities. These improvements originate from the use of all available information within the SCA in conjunction with the expected physical bounds concerning the expected range of the lidar ratio. The new MLE algorithm is equally evaluated against the SCA on end-to-end simulations of two homogeneous scenes and for real Aelous data collocated with measurements by a ground-based lidar and the CALIPSO satellite to consolidate and to illustrate the improvements. The largest improvements were seen in the retrieval of the extinction coefficients and lidar ratio ranging up to one order of magnitude or more in some cases due to an effective noise dampening.

2022 ◽  
Vol 15 (1) ◽  
pp. 185-203
Author(s):  
Frithjof Ehlers ◽  
Thomas Flament ◽  
Alain Dabas ◽  
Dimitri Trapon ◽  
Adrien Lacour ◽  
...  

Abstract. The European Space Agency (ESA) Earth Explorer Mission Aeolus was launched in August 2018, carrying the first Doppler wind lidar in space. Its primary payload, the Atmospheric LAser Doppler INstrument (ALADIN), is an ultraviolet (UV) high-spectral-resolution lidar (HSRL) measuring atmospheric backscatter from air molecules and particles in two separate channels. The primary mission product is globally distributed line-of-sight wind profile observations in the troposphere and lower stratosphere. Atmospheric optical properties are provided as a spin-off product. Being an HSRL, Aeolus is able to independently measure the particle extinction coefficients, co-polarized particle backscatter coefficients and the co-polarized lidar ratio (the cross-polarized return signal is not measured). This way, the retrieval is independent of a priori lidar ratio information. The optical properties are retrieved using the standard correct algorithm (SCA), which is an algebraic inversion scheme and therefore sensitive to measurement noise. In this work, we reformulate the SCA into a physically constrained maximum-likelihood estimation (MLE) problem and demonstrate a predominantly positive impact and considerable noise suppression capabilities. These improvements originate from the use of all available information by the MLE in conjunction with the expected physical bounds concerning positivity and the expected range of the lidar ratio. To consolidate and to illustrate the improvements, the new MLE algorithm is evaluated against the SCA on end-to-end simulations of two homogeneous scenes and for real Aeolus data collocated with measurements by a ground-based lidar and the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The largest improvements were seen in the retrieval precision of the extinction coefficients and lidar ratio ranging up to 1 order of magnitude or more in some cases due to effective noise dampening. In real data cases, the increased precision of MLE with respect to the SCA is demonstrated by increased horizontal homogeneity and better agreement with the ground truth, though proper uncertainty estimation of MLE results is challenged by the constraints, and the accuracy of MLE and SCA retrievals can depend on calibration errors, which have not been considered.


2021 ◽  
Author(s):  
Frithjof Ehlers ◽  
Alain Dabas ◽  
Thomas Flament ◽  
Dimitri Trapon ◽  
Adrien Lacour ◽  
...  

<p>The Aladin instrument on-board the ESA Earth Explorer satellite Aeolus is a UV high spectral resolution Doppler Wind Lidar. The main mission product is profiles of horizontally projected line-of-sight winds, and the instrument design is therefore optimized to measure Doppler shifts of the atmospheric backscatter signals compared to the UV light emitted at ~355 nm (ESA, 2008; Stoffelen, 2005). Since the lidar backscatter contains information on the location of optically thin aerosol and cloud layers and cloud tops, spin-off products have been developed to retrieve aerosol and cloud backscatter and extinction coefficient and lidar ratio profile products (ESA, 2008; Flamant, 2008; Flamant, 2017). The advantage of a high spectral resolution lidar is that it measures molecular and particle backscatter separately in two dedicated channels. Still, some contributions from molecular backscatter exists in the measurements from the Fizeau channel and vice versa. This channel cross-talk requires correction during the product retrieval.</p><p>The Aeolus L2A operational aerosol and cloud retrieval algorithm is applying the so-called high spectral resolution retrieval method for the calculation of the particle and extinction backscatter coefficient products. The algorithm, developed at IPSL and Météo-France, is called the Standard Correct Algorithm (SCA) (Flamant, 2008; Flamant, 2017). High signal noise is obtained due to ever-decreasing laser energies and instrument receive path transmission. As a result, the Aeolus SCA optical properties retrieval is hampered. Particularly the ill-posed particle extinction coefficient retrieval is severely affected. In the past, attempts were made to mitigate nonphysical optical properties by measures like zero-flooring or signal accumulation in even coarser range gates (Flamant, 2017). Their success was limited.</p><p>An alternative noise suppression approach by Maximum Likelihood Estimation has therefore been prototyped that permits the retrieval of extinction coefficients and lidar ratios solely within pre-defined physical bounds. The optical properties are fitted to the 24 Aeolus atmospheric range gates within single atmospheric columns, minimizing the corresponding distance to the observed L1B useful signals measured by both spectrometers. This up to 48-dimensional non-linear regression problem is solved by means of the L-BFGS-B algorithm (Zhu, 1997). The method has proven its usefulness in noise suppression with astonishing efficiency. Particularly, the retrieved extinction coefficient profiles are less noisy, clearly revealing atmospheric layers also visible in the L1B useful signal profiles. The method is validated on end-to-end simulations and in-orbit observations.</p><p><strong>References<br></strong></p><p>ESA, ADM-Aeolus Science Report. ESA SP-1311, ESA Communication Production Office, 121 pp., 2008, available on http://www.esa.int/aeolus.</p><p>Flamant, P. H., Cuesta, J., Denneulin, M.-L., Dabas, A., Huber, D. ADM-Aeolus retrieval algorithms for aerosol and cloud products, Tellus, 60A, 273-286, 2008, https://doi.org/10.1111/j.1600-0870.2007.00287.x.</p><p>Flamant, P. et al. ADM-Aeolus L2A Algorithm Theoretical Baseline Document, 2017, available on https://earth.esa.int/aos/AeolusCalVal.</p><p>Stoffelen, A. et al. The atmospheric dynamics mission for global wind field measurement, Bulletin of the American Meteorological Society, 86, 73-88, 2005, https://doi.org/10.1175/BAMS-86-1-73.</p><p>Zhu, C., Byrd R. H. and Nocedal, J. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization, ACM Transactions on Mathematical Software, 23 (4), 550-560, 1997, https://doi.org/10.1145/279232.279236. <br><br></p>


2021 ◽  
Author(s):  
Thomas Flament ◽  
Alain Dabas ◽  
Dimitri Trapon ◽  
Adrien Lacour ◽  
Frithjof Ehlers ◽  
...  

<p>The European Satellite has the first space-borne high-spectral resolution UV lidar onboard called ALADIN. Two detection channels, a broadband (Rayleigh channel) and a narrowband (Mie channel), are implemented. Carefully calibrated, this combination offers the possibility to derive independent estimates of the backscatter and extinction coefficients of clouds andaerosols, leading to a direct estimation of the lidar ratio, useful for aerosol classification.</p><p>The presentation will show how the official processor of the mission works for the retrieval of optical properties of cloud and aerosol particles, with a focus on the currently available products (called L2A). The potential of the L2A processor will be illustrated by results obtained on data acquired since Aeolus launch and by comparisons to ground based lidars in the frame of Cal/Val activities.</p><p>The L2A product will become publicly available during Spring 2021. Thus, this is also an opportunity to introduce a few practical aspects about its usage.</p>


Sign in / Sign up

Export Citation Format

Share Document