A Comparison of Aphelion Cloud Belt Phase Functions Before and After the Mars Year 34 Global Dust Storm

2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

<p>1. INTRODUCTION</p><p>The Mars Science Laboratory (MSL) is located in Gale Crater (4.5°S, 137.4°E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L<sub>s</sub>=50°-150°), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.</p><p>Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L<sub>s</sub>~188° to L<sub>s</sub>~250° of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.</p><p>2. METHODS</p><p>The PFSS consists of 9 cloud movies of three frames each, taken using MSL’s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.  In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=67584351a5c2fde95856e0760f04bbf3&ct=x&pn=gnp.elif&d=1" alt="Figure 1 – Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35" width="800" height="681"></p><p>Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.</p><p>3. RESULTS AND DISCUSSION</p><p>There were a total of 26 PFSS observations taken in MY 35 between L<sub>s</sub>~50°-160°, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season.  </p><p>Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.</p>

2008 ◽  
Vol 47 (9) ◽  
pp. 2311-2330 ◽  
Author(s):  
Ping Yang ◽  
Zhibo Zhang ◽  
George W. Kattawar ◽  
Stephen G. Warren ◽  
Bryan A. Baum ◽  
...  

Abstract Bullet rosette particles are common in ice clouds, and the bullets may often be hollow. Here the single-scattering properties of randomly oriented hollow bullet rosette ice particles are investigated. A bullet, which is an individual branch of a rosette, is defined as a hexagonal column attached to a hexagonal pyramidal tip. For this study, a hollow structure is included at the end of the columnar part of each bullet branch and the shape of the hollow structure is defined as a hexagonal pyramid. A hollow bullet rosette may have between 2 and 12 branches. An improved geometric optics method is used to solve for the scattering of light in the particle. The primary optical effect of incorporating a hollow end in each of the bullets is to decrease the magnitude of backscattering. In terms of the angular distribution of scattered energy, the hollow bullets increase the scattering phase function values within the forward scattering angle region from 1° to 20° but decrease the phase function values at side- and backscattering angles of 60°–180°. As a result, the presence of hollow bullets tends to increase the asymmetry factor. In addition to the scattering phase function, the other elements of the phase matrix are also discussed. The backscattering depolarization ratios for hollow and solid bullet rosettes are found to be very different. This may have an implication for active remote sensing of ice clouds, such as from polarimetric lidar measurements. In a comparison of solid and hollow bullet rosettes, the effect of the differences on the retrieval of both the ice cloud effective particle size and optical thickness is also discussed. It is found that the presence of hollow bullet rosettes acts to decrease the inferred effective particle size and to increase the optical thickness in comparison with the use of solid bullet rosettes.


2012 ◽  
Vol 12 (19) ◽  
pp. 9355-9364 ◽  
Author(s):  
A. J. Baran ◽  
J.-F. Gayet ◽  
V. Shcherbakov

Abstract. In-situ Polar Nephelometer (PN) measurements of unusual ice crystal scattering phase functions, obtained near the cloud-top of a mid-latitude anvil cloud, at a temperature of about −58 °C, were recently reported by Gayet et al. (2012). The ice crystal habits that produced the phase functions consisted of aggregates of ice crystals and aggregates of quasi-spherical ice particles. The diameters of the individual quasi-spherical ice particles were estimated to be between about 15 μm and 20 μm. The measured-averaged scattering phase functions were featureless, at scattering angles less than about 100°, but an ice bow-like feature was noted between the scattering angles of about 120° to 160°. The estimated asymmetry parameter was 0.78 ± 0.04. In this paper, the averaged scattering phase function is interpreted in terms of a weighted habit mixture model. The model that provides the best overall fit to the measured scattering phase function comprises of highly distorted ten-element hexagonal ice aggregates and quasi-spherical ice particles. The smaller quasi-spherical ice crystals are represented by Chebyshev ice particles of order 3, and were assumed to have equivalent spherical diameters of 24 μm. The asymmetry parameter of the best overall model was found to be 0.79. It is argued that the Chebyshev-like ice particles are responsible for the ice bow-like feature and mostly dominate the scattered intensity measured by the PN. The results from this paper have important implications for climate modelling (energy balance of anvils), cloud physics and the remote sensing of cirrus properties.


2012 ◽  
Vol 12 (5) ◽  
pp. 12485-12502 ◽  
Author(s):  
A. J. Baran ◽  
J.-F. Gayet ◽  
V. Shcherbakov

Abstract. In-situ Polar Nephelometer (PN) measurements of unusual ice crystal scattering phase functions were recently reported by Gayet et al. (2012). The ice crystal habits that produced the phase functions were small chain-like aggregates, which had on their surfaces, smaller quasi-spherical ice crystals. The measured-averaged phase functions were featureless, at scattering angles less than about 100°, but an ice bow-like feature was noted between the scattering angles of about 120° to 160°. The estimated asymmetry parameter was 0.78 ± 0.04. In this paper, the phase function is interpreted in terms of a weighted habit mixture model. The best-fit model comprises of highly distorted ten element hexagonal ice aggregates, and the smaller quasi-spherical ice crystals are represented by Chebyshev ice particles. The weighted mean asymmetry parameter was found to be 0.81. It is argued that the Chebyshev-like ice particles are responsible for the ice bow-like feature and mostly dominate the scattered intensity measured by the PN. The results of this paper have important implications for climate modelling (energy balance of anvils) and the remote sensing of cirrus properties.


2018 ◽  
Author(s):  
Paolo Dandini ◽  
Zbigniew Ulanowski ◽  
David Campbell ◽  
Richard Kaye

Abstract. The halo ratio (HR) is a quantitative measure characterizing the occurrence of the 22° halo peak associated with cirrus. We propose to obtain it from the scattering phase function (SPF) derived from all-sky imaging. Ground based fisheye cameras are used to retrieve the SPF by implementing the necessary image transformations and corrections. These consist of geometric correction of lens distortion by utilizing positions of known stars in a camera image, transforming the images from the zenith-centred to the light-source-centred system of coordinates, correcting for the air mass and for vignetting, the latter using independent measurements from a sun photometer. The SPF is then determined by averaging the image brightness over the azimuth angle and the HR by calculating the ratio of the SPF at two scattering angles in the vicinity of the 22° halo peak. In variance from previous suggestions we select these angles to be 20° and 23°, on the basis of our observations. HR time series have been obtained under various cloud conditions, including halo cirrus, non-halo cirrus and scattered cumulus. While the HR measured in this way is found to be sensitive to the halo status of cirrus, showing values typically > 1 under halo producing clouds, similar HR values, mostly artefacts associated with bright cloud edges, can also be occasionally observed under scattered cumulus. Given that the HR is an ice cloud characteristic, a separate cirrus detection algorithm is necessary to screen out non-ice clouds before deriving reliable HR statistics. Here we propose utilizing sky brightness temperature from infrared radiometry: both its absolute value and the magnitude of fluctuations obtained through detrended fluctuation analysis. The brightness temperature data permits the detection of cirrus in most but not all instances.


2019 ◽  
Vol 12 (2) ◽  
pp. 1295-1309 ◽  
Author(s):  
Paolo Dandini ◽  
Zbigniew Ulanowski ◽  
David Campbell ◽  
Richard Kaye

Abstract. The halo ratio (HR) is a quantitative measure characterizing the occurrence of the 22∘ halo peak associated with cirrus. We propose to obtain it from an approximation to the scattering phase function (SPF) derived from all-sky imaging. Ground-based fisheye cameras are used to retrieve the SPF by implementing the necessary image transformations and corrections. These consist of geometric camera characterization by utilizing positions of known stars in a camera image, transforming the images from the zenith-centred to the light-source-centred system of coordinates and correcting for the air mass and for vignetting, the latter using independent measurements from a sun photometer. The SPF is then determined by averaging the image brightness over the azimuth angle and the HR by calculating the ratio of the SPF at two scattering angles in the vicinity of the 22∘ halo peak. In variance from previous suggestions we select these angles to be 20 and 23∘, on the basis of our observations. HR time series have been obtained under various cloud conditions, including halo cirrus, non-halo cirrus and scattered cumuli. While the HR measured in this way is found to be sensitive to the halo status of cirrus, showing values typically >1 under halo-producing clouds, similar HR values, mostly artefacts associated with bright cloud edges, can also be occasionally observed under scattered cumuli. Given that the HR is an ice cloud characteristic, a separate cirrus detection algorithm is necessary to screen out non-ice clouds before deriving reliable HR statistics. Here we propose utilizing sky brightness temperature from infrared radiometry: both its absolute value and the magnitude of fluctuations obtained through detrended fluctuation analysis. The brightness temperature data permit the detection of cirrus in most but not all instances.


Sign in / Sign up

Export Citation Format

Share Document