ice cloud
Recently Published Documents


TOTAL DOCUMENTS

558
(FIVE YEARS 154)

H-INDEX

52
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Kai Zhang ◽  
Wentao Zhang ◽  
Hui Wan ◽  
Philip J. Rasch ◽  
Steven J. Ghan ◽  
...  

Abstract. The effective radiative forcing of anthropogenic aerosols (ERFaer) is an important measure of the anthropogenic aerosol effects simulated by a global climate model. Here we analyze ERFaer simulated by the E3SMv1 atmosphere model using both century-long free-running atmosphere-land simulations and short nudged simulations. We relate the simulated ERFaer to characteristics of the aerosol composition and optical properties, and evaluate the relationships between key aerosol and cloud properties. In terms of historical changes from the year 1870 to 2014, our results show that the global mean anthropogenic aerosol burden and optical depth increase during the simulation period as expected, but the regional averages show large differences in the temporal evolution. The largest regional differences are found in the emission-induced evolution of the burden and optical depth of the sulfate aerosol: a strong decreasing trend is seen in the Northern Hemisphere high-latitude region after around 1970, while a continued increase is simulated in the tropics. Consequently, although the global mean anthropogenic aerosol burden and optical depth increase from 1870 to 2014, the ERFaer magnitude does not increase after around year 1970. The relationships between key aerosol and cloud properties (relative changes between preindustrial and present-day conditions) also show evident changes after 1970, diverging from the linear relationships exhibited for the period from 1870 to 2014. The ERFaer in E3SMv1 is relatively large compared to the recently published multi-model estimates; the primary reason is the large indirect aerosol effect (i.e., through aerosol-cloud interactions). Compared to other models, E3SMv1 features a stronger sensitivity of the cloud droplet effective radius to changes in the cloud droplet number concentration. Large sensitivity is also seen in the liquid cloud optical depth, which is determined by changes in both the effective radius and liquid water path. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 are found to have a strong correlation, as the evolution of anthropogenic sulfate aerosols affects both the liquid cloud formation and the homogeneous ice nucleation in cirrus clouds. The ERFaer estimates in E3SMv1 for the shortwave and longwave components are sensitive to the parameterization changes in both liquid and ice cloud processes. When the parameterization of ice cloud processes is modified, the top-of-atmosphere forcing changes in the shortwave and longwave components largely offset each other, so the net effect is negligible. This suggests that, to reduce the magnitude of the net ERFaer, it would be more effective to reduce the anthropogenic aerosol effect through liquid or mixed-phase clouds.


2021 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Jiang Ye ◽  
Yuxuan Qiang ◽  
Rui Zhang ◽  
Xinguo Liu ◽  
Yixin Deng ◽  
...  

The lack of ground control points (GCPs) affects the elevation accuracy of digital surface models (DSMs) generated by optical satellite stereo images and limits the application of high-resolution DSMs. It is a feasible idea to use ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) laser altimetry data to improve the elevation accuracy of optical stereo images, but it is necessary to accurately match the two types of data. This paper proposes a DSM registration strategy based on terrain similarity (BOTS), which integrates ICESat-2 laser altimetry data without GCPs and improves the DSM elevation accuracy generation from optical satellite stereo pairs. Under different terrain conditions, Worldview-2, SV-1, GF-7, and ZY-3 stereo pairs were used to verify the effectiveness of this method. The experimental results show that the BOTS method proposed in this paper is more robust when there are a large number of abnormal points in the ICESat-2 data or there is a large elevation gap between DSMs. After fusion of ICESat-2 data, the DSM elevation accuracy extracted from the satellite stereo pair is improved by 73~92%, and the root mean square error (RMSE) of Worldview-2 DSM reaches 0.71 m.


2021 ◽  
Vol 14 (12) ◽  
pp. 7497-7526
Author(s):  
Alan J. Geer ◽  
Peter Bauer ◽  
Katrin Lonitz ◽  
Vasileios Barlakas ◽  
Patrick Eriksson ◽  
...  

Abstract. Satellite observations of radiation in the microwave and sub-millimetre spectral regions (broadly from 1 to 1000 GHz) can have strong sensitivity to cloud and precipitation particles in the atmosphere. These particles (known as hydrometeors) scatter, absorb, and emit radiation according to their mass, composition, shape, internal structure, and orientation. Hence, microwave and sub-millimetre observations have applications including weather forecasting, geophysical retrievals and model validation. To simulate these observations requires a scattering-capable radiative transfer model and an estimate of the bulk optical properties of the hydrometeors. This article describes the module used to integrate single-particle optical properties over a particle size distribution (PSD) to provide bulk optical properties for the Radiative Transfer for TOVS microwave and sub-millimetre scattering code, RTTOV-SCATT, a widely used fast model. Bulk optical properties can be derived from a range of particle models including Mie spheres (liquid and frozen) and non-spherical ice habits from the Liu and Atmospheric Radiative Transfer Simulator (ARTS) databases, which include pristine crystals, aggregates, and hail. The effects of different PSD and particle options on simulated brightness temperatures are explored, based on an analytical two-stream solution for a homogeneous cloud slab. The hydrometeor scattering “spectrum” below 1000 GHz is described, along with its sensitivities to particle composition (liquid or ice), size and shape. The optical behaviour of frozen particles changes in the frequencies above 200 GHz, moving towards an optically thick and emission-dominated regime more familiar from the infrared. This region is little explored but will soon be covered by the Ice Cloud Imager (ICI).


2021 ◽  
pp. 105390
Author(s):  
Loïc Poncin ◽  
Armin Kleinböhl ◽  
David M. Kass ◽  
R. Todd Clancy ◽  
Shohei Aoki ◽  
...  
Keyword(s):  

2021 ◽  
Vol 15 (11) ◽  
pp. 5241-5260
Author(s):  
Birgit Wessel ◽  
Martin Huber ◽  
Christian Wohlfart ◽  
Adina Bertram ◽  
Nicole Osterkamp ◽  
...  

Abstract. We present the generation and validation of an updated version of the TanDEM-X digital elevation model (DEM) of Antarctica: the TanDEM-X PolarDEM 90 m of Antarctica. Improvements compared to the global TanDEM-X DEM version comprise filling gaps with newer bistatic synthetic aperture radar (SAR) acquisitions of the TerraSAR-X and TanDEM-X satellites, interpolation of smaller voids, smoothing of noisy areas, and replacement of frozen or open sea areas with geoid undulations. For the latter, a new semi-automatic editing approach allowed for the delineation of the coastline from DEM and amplitude data. Finally, the DEM was transformed into the cartographic Antarctic Polar Stereographic projection with a homogeneous metric spacing in northing and easting of 90 m. As X-band SAR penetrates the snow and ice pack by several meters, a new concept for absolute height adjustment was set up that relies on areas with stable penetration conditions and on ICESat (Ice, Cloud, and land Elevation Satellite) elevations. After DEM generation and editing, a sophisticated height error characterization of the whole Antarctic continent with ICESat data was carried out, and a validation over blue ice achieved a mean vertical height error of just −0.3 m ± 2.5 m standard deviation. The filled and edited Antarctic TanDEM-X PolarDEM 90 m is outstanding due to its accuracy, homogeneity, and coverage completeness. It is freely available for scientific purposes and provides a high-resolution data set as basis for polar research, such as ice velocity, mass balance estimation, or orthorectification.


2021 ◽  
Author(s):  
Shuai Dong ◽  
Zhenzhan Wang ◽  
Shengwei Zhang ◽  
Wensi Zhai ◽  
Bin Li
Keyword(s):  

Author(s):  
Nurun Nahar Lata ◽  
Bo Zhang ◽  
Simeon Schum ◽  
Lynn Mazzoleni ◽  
Rhenton Brimberry ◽  
...  

Author(s):  
Siyu Chen ◽  
Hongru Bi ◽  
Renhe Zhang ◽  
Yong Wang ◽  
Jianping Guo ◽  
...  

Abstract Dust-cloud-surface radiation interactions (DCRI) is a complex nonlinear relation referring to the influences of both atmospheric dust and dust-on-snow on surface albedo. A “Tiramisu” snow event occurred on December 1st, 2018, in Urumqi, China, providing an excellent testbed for exploring the comprehensive effect induced by atmospheric dust and those deposited atop fresh snowpack on surface radiation. A detailed analysis indicates that the decrease of snow albedo by 0.17–0.26 (22–34%) is contributed by the effects both the dust-cloud interactions and dust-on-snow at synoptic scale in this case. In particular, dust well mixed with ice clouds at altitudes of 2.5–5.5 km disrupted the “seeder-feeder” structure of clouds and heterogeneous ice nucleation. Dust-induced changes in the low layer of ice cloud (3.3–5.5 km) under a low temperature of –20 °C resulted in a 31.8% increase in the ice particle radius and 84.6% in the ice water path, which acted to indirectly buffer the incident solar radiation reaching the surface. Dust particles deposited on the snow surface further caused snow darkening since the snow albedo was found to decrease by 11.8–23.3%. These findings underscore the importance of considering the comprehensive effect of dust-cloud-radiation interactions in the future.


2021 ◽  
Vol 15 (11) ◽  
pp. 5115-5132
Author(s):  
Rajashree Tri Datta ◽  
Bert Wouters

Abstract. We introduce an algorithm (Watta) which automatically calculates supraglacial lake bathymetry and detects potential ice layers along tracks of the ICESat-2 (Ice, Cloud, and Land Elevation Satellite) laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, and depth corrected for refraction and (sub-)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in situ measurements for calibration. Imagery sources include Landsat 8 Operational Land Imager (OLI), Sentinel-2, and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in western Greenland, and we use multiple imagery sources (available for 45 of these lakes) to assess the use of the red vs. green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly simultaneous Operation IceBridge CAMBOT (Continuous Airborne Mapping By Optical Translator) imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season. Our results suggest that the use of multiple imagery sources (both publicly available and commercial), in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.


Sign in / Sign up

Export Citation Format

Share Document