CREATING AND MANIPULATING CONTROL FLOW GRAPHS WITH MULTILEVEL GROUPING AND CODE COVERAGE

Author(s):  
Robert Gold

Control flow graphs and code coverageThe control flow of programs can be represented by directed graphs. In this paper we provide a uniform and detailed formal basis for control flow graphs combining known definitions and results with new aspects. Two graph reductions are defined using only syntactical information about the graphs, but no semantical information about the represented programs. We prove some properties of reduced graphs and also about the paths in reduced graphs. Based on graphs, we define statement coverage and branch coverage such that coverage notions correspond to node coverage, and edge coverage, respectively.


Author(s):  
Rémi Géraud ◽  
Mirko Koscina ◽  
Paul Lenczner ◽  
David Naccache ◽  
David Saulpic
Keyword(s):  

Author(s):  
Bing Qiao ◽  
Hongji Yang ◽  
Alan O’Callaghan

When developing a software system, there are a number of principles, paradigms, and tools available to choose from. For a specific platform or programming language, a standard way can usually be found to archive the ultimate system; for example, a combination of an incremental development process, object-oriented analysis and design, and a well supported CASE (Computer-Aided Software Engineering) tool. Regardless of the technology to be adopted, the final outcome of the software development is always a working software system. However, when it comes to software reengineering, there is rather less consensus on either approaches or outcomes. Shall we use black-box or white-box reverse engineering for program understanding? Shall we produce data and control flow graphs, or some kind of formal specifications as the output of analysis? Each of these techniques has its pros and cons of tackling various software reengineering problems, and none of them on its own suffices to a whole reengineering project. A proper integration of various techniques capable of solving a specific issue could be an effective way to unravel a complicated software system. This kind of integration has to be done from an architectural point of view. One of the most exciting outcomes of recent efforts on software architecture is the Object Management Group’s (OMG) Model-Driven Architecture (MDA). MDA provides a unified framework for developing middleware-based modern distributed systems, and also a definite goal for software reengineering. This chapter presents a unified software reengineering methodology based on Model-Driven Architecture, which consists of a framework, a process, and related techniques.


Author(s):  
Strauss Cunha Carvalho ◽  
Renê Esteves Maria ◽  
Leonardo Schmitt ◽  
Luiz Alberto Vieira Dias
Keyword(s):  

Author(s):  
Dehong Qiu ◽  
Jialin Sun ◽  
Hao Li

Measuring program similarity plays an important role in solving many problems in software engineering. However, because programs are instruction sequences with complex structures and semantic functions and furthermore, programs may be obfuscated deliberately through semantics-preserving transformations, measuring program similarity is a difficult task that has not been adequately addressed. In this paper, we propose a new approach to measuring Java program similarity. The approach first measures the low-level similarity between basic blocks according to the bytecode instruction sequences and the structural property of the basic blocks. Then, an error-tolerant graph matching algorithm that can combat structure transformations is used to match the Control Flow Graphs (CFG) based on the basic block similarity. The high-level similarity between Java programs is subsequently calculated on the matched pairs of the independent paths extracted from the optimal CFG matching. The proposed CFG-Match approach is compared with a string-based approach, a tree-based approach and a graph-based approach. Experimental results show that the CFG-Match approach is more accurate and robust against semantics-preserving transformations. The CFG-Match approach is used to detect Java program plagiarism. Experiments on the collection of benchmark program pairs collected from the students’ submission of project assignments demonstrate that the CFG-Match approach outperforms the comparative approaches in the detection of Java program plagiarism.


Sign in / Sign up

Export Citation Format

Share Document