scholarly journals Flexible Access Control and Confidentiality over Encrypted Data for Document-based Database

Author(s):  
Maryam Almarwani ◽  
Boris Konev ◽  
Alexei Lisitsa
2008 ◽  
Vol 10 (4) ◽  
pp. 1-37 ◽  
Author(s):  
Luc Bouganim ◽  
Francois Dang Ngoc ◽  
Philippe Pucheral

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 210462-210477
Author(s):  
Alexandros Bakas ◽  
Hai-Van Dang ◽  
Antonis Michalas ◽  
Alexandr Zalitko

2020 ◽  
Author(s):  
Zhen Liu ◽  
Qiong Huang ◽  
Duncan S Wong

Abstract Attribute-based encryption (ABE) is a versatile one-to-many encryption primitive, which enables fine-grained access control over encrypted data. Due to its promising applications in practice, ABE schemes with high efficiency, security and expressivity have been continuously emerging. On the other hand, due to the nature of ABE, a malicious user may abuse its decryption privilege. Therefore, being able to identify such a malicious user is crucial towards the practicality of ABE. Although some specific ABE schemes in the literature enjoys the tracing function, they are only proceeded case by case. Most of the ABE schemes do not support traceability. It is thus meaningful and important to have a generic way of equipping any ABE scheme with traceability. In this work, we partially solve the aforementioned problem. Namely, we propose a way of transforming (non-traceable) ABE schemes satisfying certain requirements to fully collusion-resistant black-box traceable ABE schemes, which adds only $O(\sqrt{\mathcal{K}})$ elements to the ciphertext where ${\mathcal{K}}$ is the number of users in the system. And to demonstrate the practicability of our transformation, we show how to convert a couple of existing non-traceable ABE schemes to support traceability.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Carla Mascia ◽  
Massimiliano Sala ◽  
Irene Villa

<p style='text-indent:20px;'>Functional Encryption (FE) expands traditional public-key encryption in two different ways: it supports fine-grained access control and allows learning a function of the encrypted data. In this paper, we review all FE classes, describing their functionalities and main characteristics. In particular, we mention several schemes for each class, providing their security assumptions and comparing their properties. To our knowledge, this is the first survey that encompasses the entire FE family.</p>


2021 ◽  
Vol 9 (1) ◽  
pp. 295-303
Author(s):  
Dr. P. Vijaya Bharati, R. Ravi, N. Sowjanya Kumari

Data increased daily and has a significant role in every field, like industries, medical, etc. The data is captured, stored, and it is processed to retrieve the necessary data. Security and privacy play an essential role when critical data is shared among users in a distributed environment. These challenges are to be addressed. Mainly they are highly required during sharing and storing vast amounts of data. This paper presents a novel solution to secure the vast data with Attribute-based encryption (ABE), providing access control that prevents unauthorized user's access. Moreover, query optimization is provided in this paper to retrieve the required encrypted data from the big data quickly.


Cryptography ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 28
Author(s):  
Yunhong Zhou ◽  
Shihui Zheng ◽  
Licheng Wang

In the area of searchable encryption, public key encryption with keyword search (PEKS) has been a critically important and promising technique which provides secure search over encrypted data in cloud computing. PEKS can protect user data privacy without affecting the usage of the data stored in the untrusted cloud server environment. However, most of the existing PEKS schemes concentrate on data users’ rich search functionalities, regardless of their search permission. Attribute-based encryption technology is a good method to solve the security issues, which provides fine-grained access control to the encrypted data. In this paper, we propose a privacy-preserving and efficient public key encryption with keyword search scheme by using the ciphertext-policy attribute-based encryption (CP-ABE) technique to support both fine-grained access control and keyword search over encrypted data simultaneously. We formalize the security definition, and prove that our scheme achieves selective indistinguishability security against an adaptive chosen keyword attack. Finally, we present the performance analysis in terms of theoretical analysis and experimental analysis, and demonstrate the efficiency of our scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xingting Dong ◽  
Yanhua Zhang ◽  
Baocang Wang ◽  
Jiangshan Chen

Attribute-based encryption (ABE) can support a fine-grained access control to encrypted data. When the user’s secret-key is compromised, the ABE system has to revoke its decryption privileges to prevent the leakage of encrypted data. Although there are many constructions about revocable ABE from bilinear maps, the situation with lattice-based constructions is less satisfactory, and a few efforts were made to close this gap. In this work, we propose the first lattice-based server-aided revocable attribute-based encryption (SR-ABE) scheme and thus the first such construction that is believed to be quantum resistant. In the standard model, our scheme is proved to be secure based on the hardness of the Learning With Errors (LWE) problem.


Sign in / Sign up

Export Citation Format

Share Document