public key
Recently Published Documents


TOTAL DOCUMENTS

4451
(FIVE YEARS 870)

H-INDEX

91
(FIVE YEARS 10)

2022 ◽  
Vol 11 (2) ◽  
pp. 0-0

IoT devices are having many constraints related to computation power and memory etc. Many existing cryptographic algorithms of security could not work with IoT devices because of these constraints. Since the sensors are used in large amount to collect the relevant data in an IoT environment, and different sensor devices transmit these data as useful information, the first thing needs to be secure is the identity of devices. The second most important thing is the reliable information transmission between a sensor node and a sink node. While designing the cryptographic method in the IoT environment, programmers need to keep in mind the power limitation of the constraint devices. Mutual authentication between devices and encryption-decryption of messages need some sort of secure key. In the proposed cryptographic environment, there will be a hierarchical clustering, and devices will get registered by the authentication center at the time they enter the cluster. The devices will get mutually authenticated before initiating any conversation and will have to follow the public key protocol.


Author(s):  
Tarasvi Lakum ◽  
Barige Thirumala Rao

<p><span>In this paper, we are proposing a mutual query data sharing protocol (MQDS) to overcome the encryption or decryption time limitations of exiting protocols like Boneh, rivest shamir adleman (RSA), Multi-bit transposed ring learning parity with noise (TRLPN), ring learning parity with noise (Ring-LPN) cryptosystem, key-Ordered decisional learning parity with noise (kO-DLPN), and KD_CS protocol’s. Titled scheme is to provide the security for the authenticated user data among the distributed physical users and devices. The proposed data sharing protocol is designed to resist the chosen-ciphertext attack (CCA) under the hardness solution for the query shared-strong diffie-hellman (SDH) problem. The evaluation of proposed work with the existing data sharing protocols in computational and communication overhead through their response time is evaluated.</span></p>


2022 ◽  
Author(s):  
Frank Vega

Under the assumption that there exist one-way functions, then we obtain a contradiction following a solid argumentation and therefore, one-way functions do not exist by contraposition. Hence, function problems such as the integer factorization of two large primes can be solved efficiently. In this way, we prove that is not safe many of the encryption and authentication methods such as the public-key cryptography. It could be the case that $P = NP$ or $P \neq NP$, even though there are no one-way functions. However, this result proves that $P = UP$.


2022 ◽  
pp. 103623
Author(s):  
Zhiyong Hong ◽  
Liguo Zhou ◽  
Yu Zhan ◽  
Chengdong Liu ◽  
Baocang Wang

OALib ◽  
2022 ◽  
Vol 09 (01) ◽  
pp. 1-12
Author(s):  
Xianghao Nan
Keyword(s):  

2022 ◽  
Vol 16 (1) ◽  
pp. 64-72
Author(s):  
Nael Rahman ◽  
Vladimir Shpilrain

Abstract We offer a public key exchange protocol based on a semidirect product of two cyclic (semi)groups of matrices over Z p {{\mathbb{Z}}}_{p} . One of the (semi)groups is additive, and the other one is multiplicative. This allows us to take advantage of both operations on matrices to diffuse information. We note that in our protocol, no power of any matrix or of any element of Z p {{\mathbb{Z}}}_{p} is ever exposed, so standard classical attacks on Diffie–Hellman-like protocols are not applicable.


2022 ◽  
pp. 103620
Author(s):  
Yanmei Cao ◽  
Jianghong Wei ◽  
Fangguo Zhang ◽  
Yang Xiang ◽  
Xiaofeng Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiang Yang ◽  
Daofeng Li

Digital signatures are crucial network security technologies. However, in traditional public key signature schemes, the certificate management is complicated and the schemes are vulnerable to public key replacement attacks. In order to solve the problems, in this paper, we propose a self-certified signature scheme over lattice. Using the self-certified public key, our scheme allows a user to certify the public key without an extra certificate. It can reduce the communication overhead and computational cost of the signature scheme. Moreover, the lattice helps prevent quantum computing attacks. Then, based on the small integer solution problem, our scheme is provable secure in the random oracle model. Furthermore, compared with the previous self-certified signature schemes, our scheme is more secure.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiangjun Xin ◽  
Li Ding ◽  
Chaoyang Li ◽  
Yongxuan Sang ◽  
Qinglan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document