scholarly journals Privacy-Preserving and Efficient Public Key Encryption with Keyword Search Based on CP-ABE in Cloud

Cryptography ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 28
Author(s):  
Yunhong Zhou ◽  
Shihui Zheng ◽  
Licheng Wang

In the area of searchable encryption, public key encryption with keyword search (PEKS) has been a critically important and promising technique which provides secure search over encrypted data in cloud computing. PEKS can protect user data privacy without affecting the usage of the data stored in the untrusted cloud server environment. However, most of the existing PEKS schemes concentrate on data users’ rich search functionalities, regardless of their search permission. Attribute-based encryption technology is a good method to solve the security issues, which provides fine-grained access control to the encrypted data. In this paper, we propose a privacy-preserving and efficient public key encryption with keyword search scheme by using the ciphertext-policy attribute-based encryption (CP-ABE) technique to support both fine-grained access control and keyword search over encrypted data simultaneously. We formalize the security definition, and prove that our scheme achieves selective indistinguishability security against an adaptive chosen keyword attack. Finally, we present the performance analysis in terms of theoretical analysis and experimental analysis, and demonstrate the efficiency of our scheme.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Daini Wu ◽  
Xiaoming Wang ◽  
Qingqing Gan

A public key encryption scheme with keyword search capabilities is proposed using lattices for applications in multiuser environments. The proposed scheme enables a cloud server to check if any given encrypted data contains certain keywords specified by multiple users, but the server would not have knowledge of the keywords specified by the users or the contents of the encrypted data, which provides data privacy as well as privacy for user queries in multiuser environments. It can be proven secure under the standard learning with errors assumption in the random oracle model.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Carla Mascia ◽  
Massimiliano Sala ◽  
Irene Villa

<p style='text-indent:20px;'>Functional Encryption (FE) expands traditional public-key encryption in two different ways: it supports fine-grained access control and allows learning a function of the encrypted data. In this paper, we review all FE classes, describing their functionalities and main characteristics. In particular, we mention several schemes for each class, providing their security assumptions and comparing their properties. To our knowledge, this is the first survey that encompasses the entire FE family.</p>


2019 ◽  
Vol 35 (3) ◽  
pp. 233-249
Author(s):  
Van Anh Trinh ◽  
Viet Cuong Trinh

We address the problem of searching on encrypted data with expressive searching predicate and multi-writer/multi-reader, a cryptographic primitive which has many concrete application scenarios such as cloud computing, email gateway application and so on. In this paper, we propose a public-key encryption with keyword search scheme relied on the ciphertext-policy attribute-based encryption scheme. In our system, we consider the model where a user can generate trapdoors by himself/herself, we thus can remove the Trusted Trapdoor Generator which can save the resource and communication overhead. We also investigate the problem of combination of a public key encryption used to encrypt data and a public-key encryption with keyword search used to encrypt keywords, which can save the storage of the whole system


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Hui Yin ◽  
Yinqiao Xiong ◽  
Jixin Zhang ◽  
Lu Ou ◽  
Shaolin Liao ◽  
...  

Attribute based encryption is a promising technique that achieves flexible and fine-grained data access control over encrypted data, which is very suitable for a secure data sharing environment such as the currently popular cloud computing. However, traditional attribute based encryption fails to provide an efficient keyword based search on encrypted data, which somewhat weakens the power of this encryption technique, as search is usually the most important approach to quickly obtain data of interest from large-scale dataset. To address this problem, attribute based encryption with keyword search (ABKS) is designed to achieve fine-grained data access control and keyword based search, simultaneously, by an ingenious combination of attribute based encryption and searchable encryption. Recently, several ABKS schemes have been constructed in secure cloud storage system for data access control and keyword search. Nonetheless, each of these schemes has some defects such as impractical computation overhead and insufficient access policy expression. To overcome these limitations, in this paper, we design a Key-Policy Searchable Attribute-based Encryption Scheme (KPSABES) based on the full-blown key-policy attribute-based encryption proposed by Vipul Goyal et al. By novel design, our scheme not only inherits all advantages of that scheme but also achieves efficient and secure keyword search over encrypted data. We provide the detailed performance analyses and security proofs for our scheme. Extensive experiments demonstrated that our proposed scheme is superior in many aspects to the similar work.


2019 ◽  
Vol 23 (2) ◽  
pp. 959-989 ◽  
Author(s):  
Qiang Cao ◽  
Yanping Li ◽  
Zhenqiang Wu ◽  
Yinbin Miao ◽  
Jianqing Liu

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 421 ◽  
Author(s):  
Yunhong Zhou ◽  
Na Li ◽  
Yanmei Tian ◽  
Dezhi An ◽  
Licheng Wang

With the popularization of cloud computing, many business and individuals prefer to outsource their data to cloud in encrypted form to protect data confidentiality. However, how to search over encrypted data becomes a concern for users. To address this issue, searchable encryption is a novel cryptographic primitive that enables user to search queries over encrypted data stored on an untrusted server while guaranteeing the privacy of the data. Public key encryption with keyword search (PEKS) has received a lot of attention as an important branch. In this paper, we focus on the development of PEKS in cloud by providing a comprehensive research survey. From a technological viewpoint, the existing PEKS schemes can be classified into several variants: PEKS based on public key infrastructure, PEKS based on identity-based encryption, PEKS based on attribute-based encryption, PEKS based on predicate encryption, PEKS based on certificateless encryption, and PEKS supporting proxy re-encryption. Moreover, we propose some potential applications and valuable future research directions in PEKS.


2019 ◽  
Vol 35 (3) ◽  
pp. 233-249
Author(s):  
Van Anh Trinh ◽  
Viet Cuong Trinh

We address the problem of searching on encrypted data with expressive searching predicate and multi-writer/multi-reader, a cryptographic primitive which has many concrete application scenarios such as cloud computing, email gateway application and so on. In this paper, we propose a public-key encryption with keyword search scheme relied on the ciphertext-policy attribute-based encryption scheme. In our system, we consider the model where a user can generate trapdoors by himself/herself, we thus can remove the Trusted Trapdoor Generator which can save the resource and communication overhead. We also investigate the problem of combination of a public key encryption used to encrypt data and a public-key encryption with keyword search used to encrypt keywords, which can save the storage of the whole system


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingsheng Cao ◽  
Luhan Wang ◽  
Zhiguang Qin ◽  
Chunwei Lou

The wireless body area networks (WBANs) have emerged as a highly promising technology that allows patients’ demographics to be collected by tiny wearable and implantable sensors. These data can be used to analyze and diagnose to improve the healthcare quality of patients. However, security and privacy preserving of the collected data is a major challenge on resource-limited WBANs devices and the urgent need for fine-grained search and lightweight access. To resolve these issues, in this paper, we propose a lightweight fine-grained search over encrypted data in WBANs by employing ciphertext policy attribute based encryption and searchable encryption technologies, of which the proposed scheme can provide resource-constraint end users with fine-grained keyword search and lightweight access simultaneously. We also formally define its security and prove that it is secure against both chosen plaintext attack and chosen keyword attack. Finally, we make a performance evaluation to demonstrate that our scheme is much more efficient and practical than the other related schemes, which makes the scheme more suitable for the real-world applications.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2109
Author(s):  
Liming Fang ◽  
Minghui Li ◽  
Lu Zhou ◽  
Hanyi Zhang ◽  
Chunpeng Ge

A smart watch is a kind of emerging wearable device in the Internet of Things. The security and privacy problems are the main obstacles that hinder the wide deployment of smart watches. Existing security mechanisms do not achieve a balance between the privacy-preserving and data access control. In this paper, we propose a fine-grained privacy-preserving access control architecture for smart watches (FPAS). In FPAS, we leverage the identity-based authentication scheme to protect the devices from malicious connection and policy-based access control for data privacy preservation. The core policy of FPAS is two-fold: (1) utilizing a homomorphic and re-encrypted scheme to ensure that the ciphertext information can be correctly calculated; (2) dividing the data requester by different attributes to avoid unauthorized access. We present a concrete scheme based on the above prototype and analyze the security of the FPAS. The performance and evaluation demonstrate that the FPAS scheme is efficient, practical, and extensible.


2020 ◽  
Author(s):  
Zhen Liu ◽  
Qiong Huang ◽  
Duncan S Wong

Abstract Attribute-based encryption (ABE) is a versatile one-to-many encryption primitive, which enables fine-grained access control over encrypted data. Due to its promising applications in practice, ABE schemes with high efficiency, security and expressivity have been continuously emerging. On the other hand, due to the nature of ABE, a malicious user may abuse its decryption privilege. Therefore, being able to identify such a malicious user is crucial towards the practicality of ABE. Although some specific ABE schemes in the literature enjoys the tracing function, they are only proceeded case by case. Most of the ABE schemes do not support traceability. It is thus meaningful and important to have a generic way of equipping any ABE scheme with traceability. In this work, we partially solve the aforementioned problem. Namely, we propose a way of transforming (non-traceable) ABE schemes satisfying certain requirements to fully collusion-resistant black-box traceable ABE schemes, which adds only $O(\sqrt{\mathcal{K}})$ elements to the ciphertext where ${\mathcal{K}}$ is the number of users in the system. And to demonstrate the practicability of our transformation, we show how to convert a couple of existing non-traceable ABE schemes to support traceability.


Sign in / Sign up

Export Citation Format

Share Document