Laboratory-Based Bacterial Weathering of the Merensky Reef and Its Impact on Platinum Group Mineral Migration

2021 ◽  
Author(s):  
Ling Tan ◽  
Thomas Jones ◽  
Jianping Xie ◽  
Xinxing Liu ◽  
Gordon Southam

Abstract Weathering of the Merensky reef was enhanced under laboratory conditions by Fe- and S-oxidizing bacteria: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. These bacteria preferentially colonized pyrrhotite and pyrite, versus pentlandite and chalcopyrite (all of which were common within the rock substrate), promoting weathering. Weathering of base metal sulfides resulted in the precipitation of Fe oxides, Fe phosphate, and elemental sulfur as secondary minerals. Fe pyroxene weathered readily under acidic conditions and resulted in mineral dissolution, while other silicates (orthopyroxene and plagio-clase) precipitated Fe phosphate spherules or coatings on their surface. The deterioration of the platinum group metal (PGM) matrix (base metal sulfides and silicates) and the occurrence of a platinum grain associated with platinum nanoparticles observed in the biotic thin sections demonstrate that biogeochemical acid weathering is an important step in the active release of intact PGM grains. A platinum grain embedded in secondary Fe oxides/phosphate that had settled by gravity within the weathering solution demonstrates that secondary minerals that formed during weathering of PGM-hosting minerals also represent targets in PGM exploration by trapping and potentially slowing PGM migration. Dispersion halos surrounding or occurring downstream from PGM occurrences will likely produce two physical target classes—i.e., grains and colloids—under surficial weathering conditions.

2020 ◽  
Vol 58 (1) ◽  
pp. 99-114
Author(s):  
Norikatsu Akizawa ◽  
Tetsu Kogiso ◽  
Akira Miyake ◽  
Akira Tsuchiyama ◽  
Yohei Igami ◽  
...  

ABSTRACT Base-metal sulfides (BMSs) are minerals that host platinum-group elements (PGE) in mantle peridotites and significantly control the bulk PGE content. They have been investigated in detail down to the sub-micrometer scale to elucidate PGE behavior in the Earth's interior. Base-metal sulfides are supposedly subjected to supergene and seawater weathering, leading to the redistribution of PGEs at low temperatures. Careful and thorough measurements of BMSs are thus required to elucidate PGE behavior in the Earth's interior. In the present study, a sub-micrometer-sized PGE-bearing sulfide inclusion in a clinopyroxene crystal in a harzburgite xenolith from Tahiti (Society Islands, French Polynesia) was investigated in detail (down to the sub-micrometer scale) using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM-EDS). The sulfide inclusion is of carbonatitic metasomatic origin, as it is enveloped by carbonaceous glass, and forms a planar inclusion array with other PGE-bearing sulfide inclusions. The following sulfide phases were identified using TEM-EDS: Fe- and Ni-rich monosulfide solid solutions (MSSs), Fe- and Ni-rich pentlandite, sugakiite, heazlewoodite, chalcopyrite, and Cu-Ir-Pt-Rh-thiospinel (cuproiridsite–malanite–cuprorhodsite). We established the formation process of the metasomatic PGE-bearing sulfide inclusion by considering morphological and mineral characteristics in addition to the chemical composition. A primary MSS first crystallized from metasomatic sulfide melt at ca. 1000 °C, followed by the crystallization of an intermediate solid solution (ISS) below 900 °C. A high-form (high-temperature origin) Fe-rich pentlandite simultaneously crystallized with the primary MSS below ca. 850 °C and recrystallized into a low-form (low-temperature origin) Fe-rich pentlandite below ca. 600 °C. The primary MSS decomposed to Fe- and Ni-rich MSSs, low-form Ni-rich pentlandite, sugakiite, and heazlewoodite. The ISS decomposed to chalcopyrite below ca. 600 °C. Meanwhile, a Cu-Ir-Pt-Rh-thiospinel crystallized directly from the evolved Cu-rich sulfide melt below ca. 760 °C. Thus, Ir, Pt, and Rh preferentially partitioned into the melt phase during the crystallization process of the metasomatic sulfide melt. Metasomatic sulfide melts could be a significant medium for the transport and condensation of Pt together with Ir and Rh during the fractionation process in the Earth's interior. We hypothesize that the compositional variability of PGEs in carbonatites is due to the separation of sulfide melt leading to the loss of PGEs in the carbonatitic melts.


2021 ◽  
Vol 59 (6) ◽  
pp. 1453-1484
Author(s):  
Eduardo Mansur ◽  
Sarah-Jane Barnes ◽  
Cesar F. Ferreira Filho

ABSTRACT Most of the World's platinum-group element ore deposits occur as thin stratiform layers within layered intrusions. These layers generally contain disseminated base-metal sulfides or chromite. However, cryptic platinum-group element deposits also occur without chromite or base-metal sulfides in what are known as low-S-high platinum-group element deposits. The origin of these deposits is not clearly understood. The Luanga Complex hosts the largest platinum-group elements resource in South America (i.e., 142 Mt at 1.24 ppm Pt + Pd + Au and 0.11% Ni) and hosts both a platinum-group element deposit containing disseminated base-metal sulfides (style 1) and a low-S-high platinum-group element deposit (style 2). It therefore offers the opportunity to compare the two deposit types in the same overall geological setting and consider how the low-S-high platinum-group element deposit could have formed. The first deposit style is termed the Sulfide zone and consists of a 10–50 meter-thick interval with disseminated base metal sulfides, whereas the second style is named low-S-high-Pt-Pd zone and consists of 2–10 meter-thick discontinuous lenses of 1–5 meter-thick sulfide- and oxide-free harzburgite and orthopyroxenite with discrete platinum-group minerals. Secondary assemblages commonly replace primary igneous minerals to a variable extent throughout the deposit, and thus allow for investigating the effects of post-cumulus alteration on the distribution of a wide range of chalcophile elements in a magmatic sulfide deposit at both whole-rock and mineral scale. This study presents the whole-rock distribution of S, platinum-group elements, and Te, As, Bi, Sb, and Se in both mineralization styles and the concentration of trace elements in base-metal sulfides from the Sulfide zone. The Sulfide zone has Pt/Pd ratios around 0.5 and high concentrations of Te, As, Bi, Sb, and Se, whereas the low-S-high-platinum-group element zone has Pt/Pd ratios greater than 1 and much lower Se, Te, and Bi concentrations, but comparable As and Sb contents. This is reflected in the platinum-group element assemblage, comprising bismuthotellurides in the Sulfide zone and mostly arsenides and antimonides in the low-S, high platinum-group elements zone. Moreover, the base-metal sulfides from the Sulfide zone have anomalously high As contents (50–500 ppm), which suggest that the sulfide liquid segregated from a very As-rich silicate magma, possibly illustrated by an average komatiitic basalt that assimilated a mixture of upper continental crust and black shales. We interpret the low-S-high platinum-group elements zone as a product of S loss from magmatic sulfides during post-cumulus alteration of the Luanga Complex. Selenium, Te, Bi, and Pd were also lost together with S, whereas As and Sb were expelled from base-metal sulfide structures and combined with platinum-group elements to form platinum-group minerals, suggesting they may play a role fixating platinum-group elements during alteration. The remobilization of chalcophile elements from magmatic sulfide deposits located in the Carajás Mineral Province may represent a potential source for hydrothermal deposits found in the region.


Sign in / Sign up

Export Citation Format

Share Document