General characterizations of anisotropic Besov spaces

2012 ◽  
Vol 80 (1-2) ◽  
pp. 179-198
Author(s):  
B. Barrios ◽  
Jorge J. Betancor

2005 ◽  
Vol 12 (4) ◽  
pp. 637-658
Author(s):  
Dorothee D. Haroske ◽  
Erika Tamási

Abstract This paper deals with wavelet frames in anisotropic Besov spaces , 𝑠 ∈ ℝ, 0 < 𝑝, 𝑞 ≤ ∞, and 𝑎 = (𝑎1, . . . , 𝑎𝑛) is an anisotropy, with 𝑎𝑖 > 0, 𝑖 = 1, . . . , 𝑛, 𝑎1 + . . . + 𝑎𝑛 = 𝑛. We present sub-atomic and wavelet decompositions for a large class of distributions. To some extent our results can be regarded as anisotropic counterparts of those recently obtained in [Triebel, Studia Math. 154: 59–88, 2003].



2020 ◽  
Vol 49 (3) ◽  
pp. 863-896 ◽  
Author(s):  
Jahangir Cheshmavar ◽  
Hartmut Führ


2005 ◽  
Vol 250 (3) ◽  
pp. 539-571 ◽  
Author(s):  
Marcin Bownik


2002 ◽  
Vol 239-240 (1) ◽  
pp. 80-102 ◽  
Author(s):  
Gustavo Garrigós ◽  
Anita Tabacco




2011 ◽  
Vol 284 (14-15) ◽  
pp. 1796-1819 ◽  
Author(s):  
B. Barrios ◽  
J. J. Betancor


2002 ◽  
Vol 12 (2) ◽  
pp. 179-208 ◽  
Author(s):  
Reinhard Hochmuth


Sign in / Sign up

Export Citation Format

Share Document