initial boundary value
Recently Published Documents


TOTAL DOCUMENTS

2445
(FIVE YEARS 461)

H-INDEX

60
(FIVE YEARS 6)

2022 ◽  
pp. 108128652110731
Author(s):  
Victor A Eremeyev ◽  
Leonid P Lebedev ◽  
Violetta Konopińska-Zmysłowska

The problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated and studied. It is proved a theorem of existence and uniqueness of a weak solution for the problem under consideration.


Author(s):  
S. E. Savotchenko

New phenomenological models of recrystallization of a polycrystalline material in two regimes are proposed taking into account the finite width of grain boundaries. The solutions are obtained in an analytical form for the initial-boundary value problems formulated. They describe the distributions of the concentration of impurities diffusing from the surface coating, both in the grain boundary and in the grain itself in the recrystallized region. The speed of the recrystallization front movement is indicated, which agrees with the types of the corresponding kinetic dependences observed in experiments.


Author(s):  
Александр Юрьевич Шемахин ◽  
Виктор Семенович Желтухин ◽  
Евгений Юрьевич Шемахин

Для моделирования процессов в ВЧ-плазме пониженного давления с продувом газа разработана гибридная математическая модель при числах Кнудсена - для несущего газа. Модель включает начально-краевую задачу для кинетического уравнения Больцмана, описывающего функцию распределения несущего нейтрального газа, краевые задачи для уравнения неразрывности электронной, ионной и метастабильной компонент, уравнения сохранения энергии электронов, для ВЧ-уравнений Максвелла в форме телеграфных уравнений и уравнения Пуассона для потенциальной составляющей поля. Приводятся результаты расчета электрической напряженности, концентрации электронов, ионов и метастабилей, потенциальной составляющей электромагнитного поля в цилиндрической вакуумной камере. A hybrid mathematical model for the Knudsen numbers - for the carrier gas has been developed to simulate processes in a low pressure RF plasma with gas flow. The model includes an initial boundary value problem for the kinetic Boltzmann equation describing the distribution function of the carrier neutral gas, boundary value problems for the continuity equation of the electronic, ionic and metastable components, the electron energy conservation equations, for Maxwell’s RF equations in the form of telegraphic equations and the Poisson equation for the potential part of field. The results of the calculation of the electric intensity, the concentration of electrons, iones and metastables, the potential component of the electromagnetic field in a cylindrical vacuum chamber are presented.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Vladimir E. Fedorov ◽  
Wei-Shih Du ◽  
Mikhail M. Turov

Incomplete Cauchy-type problems are considered for linear multi-term equations solved with respect to the highest derivative in Banach spaces with fractional Riemann–Liouville derivatives and with linear closed operators at them. Some new existence and uniqueness theorems for solutions are presented explicitly and the analyticity of the solutions of the homogeneous equations are also shown. The asymmetry of the Cauchy-type problem under study is expressed in the presence of a so-called defect, which shows the number of lower-order initial conditions that should not be set when setting the problem. As applications, our abstract results are used in the study of a class of initial-boundary value problems for multi-term equations with Riemann–Liouville derivatives in time and with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hailiang Li ◽  
Houzhi Tang ◽  
Haitao Wang

<p style='text-indent:20px;'>In this paper, we study the global existence and pointwise behavior of classical solution to one dimensional isentropic Navier-Stokes equations with mixed type boundary condition in half space. Based on classical energy method for half space problem, the global existence of classical solution is established firstly. Through analyzing the quantitative relationships of Green's function between Cauchy problem and initial boundary value problem, we observe that the leading part of Green's function for the initial boundary value problem is composed of three items: delta function, diffusive heat kernel, and reflected term from the boundary. Then applying Duhamel's principle yields the explicit expression of solution. With the help of accurate estimates for nonlinear wave coupling and the elliptic structure of velocity, the pointwise behavior of the solution is obtained under some appropriate assumptions on the initial data. Our results prove that the solution converges to the equilibrium state at the optimal decay rate <inline-formula><tex-math id="M1">\begin{document}$ (1+t)^{-\frac{1}{2}} $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ L^\infty $\end{document}</tex-math></inline-formula> norm.</p>


Soft Matter ◽  
2022 ◽  
Author(s):  
Jay D. Humphrey ◽  
Christian J. Cyron

Assessing potential mechanical homeostasis requires appropriate solutions to the initial-boundary value problems that define the biophysical situation of interest and appropriate definitions of what is meant by homeostasis, including its range.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Huy Tuan Nguyen ◽  
Nguyen Anh Tuan ◽  
Chao Yang

<p style='text-indent:20px;'>This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.</p>


2021 ◽  
pp. 273-276
Author(s):  
Lyubov Shagalova

The initial – boundary value problem is considered for the Hamilton-Jacobi of evolutionary type in the case when the state space is one-dimensional. The Hamiltonian depends on the state and momentum variables, and the dependence on the momentum variable is exponential. The problem is considered on fixed bounded time interval, and the state variable changes from a given fixed value to infinity. The initial and boundary functions are subdifferentiable. It is proved that such a problem has a continuous generalized viscosity) solution. The representative formula is given for this solution. Sufficient conditions are indicated under which the generalized solution is unique. Hamilton-Jacobi equations with an exponential dependence on the momentum variable are atypical for theory, but such equations arise in practical problems, for example, in molecular genetics.


Author(s):  
Nikolay D. Kuzmichev ◽  
Ekaterina V. Danilova ◽  
Mikhael A. Vasyutin

A numerical calculation of the evolution of the temperature distribution in the longitudinal section of a niobium nitride membrane when it is heated by an electric current pulse is performed. Mathematical modeling was carried out on the basis of a two-dimensional initial-boundary value problem for an inhomogeneous heat equation. In the initial boundary value problem, it was taken into account that current and potential contacts to the membrane serve simultaneously as contacts for heat removal. The case was considered for the third from the left and the first from the right initial-boundary value problem. Analysis of the numerical solution showed that effective heat removal from the membrane can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes it possible to study the current-voltage characteristics of superconducting membranes near the critical temperature of the transition to the superconducting state by currents close to the critical density without significant heating.


Sign in / Sign up

Export Citation Format

Share Document