scholarly journals A Petrov-Galerkin Finite Element Method for Solving the Time-fractional Diffusion Equation with Interface

2018 ◽  
Vol 10 (4) ◽  
pp. 136
Author(s):  
Liwei Shi

Time-fractional partial differential equation is widely applied in a variety of disciplines, its numerical solution has attracted much attention from researchers in recent years. Time-fractional differential equations with interfaces is a more challenging problem because the governing equation has discontinuous coefficients at interfaces and sometimes singular source term exists. In this paper, we propose a Petrov-Galerkin finite element method for solving the two-dimensional time-fractional diffusion equation with interfaces. In this method, a finite difference scheme is employed in time and a Petrov-Galerkin finite element method is employed in space. Extensive numerical experiments show that for a fractional diffusion equation of order $\alpha$ with interfaces, our method gets to $(2-\alpha)$-order accurate in the $L^2$ and $L^{\infty}$ norm.

2015 ◽  
Vol 72 (3) ◽  
pp. 749-767 ◽  
Author(s):  
L. B. Feng ◽  
P. Zhuang ◽  
F. Liu ◽  
I. Turner ◽  
Y. T. Gu

2013 ◽  
Vol 18 (2) ◽  
pp. 260-273 ◽  
Author(s):  
Alaattin Esen ◽  
Yusuf Ucar ◽  
Nuri Yagmurlu ◽  
Orkun Tasbozan

In the present study, numerical solutions of the fractional diffusion and fractional diffusion-wave equations where fractional derivatives are considered in the Caputo sense have been obtained by a Galerkin finite element method using quadratic B-spline base functions. For the fractional diffusion equation, the L1 discretizaton formula is applied, whereas the L2 discretizaton formula is applied for the fractional diffusion-wave equation. The error norms L 2 and L ∞ are computed to test the accuracy of the proposed method. It is shown that the present scheme is unconditionally stable by applying a stability analysis to the approximation obtained by the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document