diffusion wave
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 114)

H-INDEX

47
(FIVE YEARS 3)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 232
Author(s):  
Alexander Kazakov ◽  
Anna Lempert

The paper deals with a nonlinear second-order one-dimensional evolutionary equation related to applications and describes various diffusion, filtration, convection, and other processes. The particular cases of this equation are the well-known porous medium equation and its generalizations. We construct solutions that describe perturbations propagating over a zero background with a finite velocity. Such effects are known to be atypical for parabolic equations and appear as a consequence of the degeneration of the equation at the points where the desired function vanishes. Previously, we have constructed it, but here the case of power nonlinearity is considered. It allows for conducting a more detailed analysis. We prove a new theorem for the existence of solutions of this type in the class of piecewise analytical functions, which generalizes and specifies the earlier statements. We find and study exact solutions having the diffusion wave type, the construction of which is reduced to the second-order Cauchy problem for an ordinary differential equation (ODE) that inherits singularities from the original formulation. Statements that ensure the existence of global continuously differentiable solutions are proved for the Cauchy problems. The properties of the constructed solutions are studied by the methods of the qualitative theory of differential equations. Phase portraits are obtained, and quantitative estimates are determined by constructing and analyzing finite difference schemes. The most significant result is that we have shown that all the special cases for incomplete equations take place for the complete equation, and other configurations of diffusion waves do not arise.



Author(s):  
Hua-Cheng Zhou ◽  
Ze-Hao Wu ◽  
Bao-Zhu Guo ◽  
Yangquan Chen

In this paper, we study boundary stabilization and disturbance rejection problem for an unstable time fractional diffusion-wave equation with Caputo time fractional derivative. For the case of no boundary external disturbance, both state feedback control and output feedback control via Neumann boundary actuation are proposed by the classical backstepping method. It is proved that the state feedback makes the closed-loop system Mittag-Leffler stable and the output feedback makes the closed-loop system asymptotically stable. When there is boundary external disturbance, we propose a disturbance estimator constructed by two infinite dimensional auxiliary systems to recover the external disturbance. A novel control law is then designed to compensate for the external disturbance in real time, and rigorous mathematical proofs are presented to show that the resulting closed-loop system is Mittag-Leffler stable and the states of all subsystems involved are uniformly bounded. As a result, we completely resolve, from a theoretical perspective, two long-standing unsolved mathematical control problems raised in [Nonlinear Dynam., 38(2004), 339-354] where all results were verified by simulations only.





Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Nicholas Bessonov ◽  
Gennady Bocharov ◽  
Vitaly Volpert

The paper is devoted to a nonlocal reaction-diffusion equation describing the development of viral infection in tissue, taking into account virus distribution in the space of genotypes, the antiviral immune response, and natural genotype-dependent virus death. It is shown that infection propagates as a reaction-diffusion wave. In some particular cases, the 2D problem can be reduced to a 1D problem by separation of variables, allowing for proof of wave existence and stability. In general, this reduction provides an approximation of the 2D problem by a 1D problem. The analysis of the reduced problem allows us to determine how viral load and virulence depend on genotype distribution, the strength of the immune response, and the level of immunity.



2021 ◽  
Vol 5 (4) ◽  
pp. 274
Author(s):  
Jinfeng Wang ◽  
Baoli Yin ◽  
Yang Liu ◽  
Hong Li ◽  
Zhichao Fang

In this article, a new mixed finite element (MFE) algorithm is presented and developed to find the numerical solution of a two-dimensional nonlinear fourth-order Riemann–Liouville fractional diffusion-wave equation. By introducing two auxiliary variables and using a particular technique, a new coupled system with three equations is constructed. Compared to the previous space–time high-order model, the derived system is a lower coupled equation with lower time derivatives and second-order space derivatives, which can be approximated by using many time discrete schemes. Here, the second-order Crank–Nicolson scheme with the modified L1-formula is used to approximate the time direction, while the space direction is approximated by the new MFE method. Analyses of the stability and optimal L2 error estimates are performed and the feasibility is validated by the calculated data.





2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mostafa Abbaszadeh ◽  
Mehdi Dehghan ◽  
Mahmoud A. Zaky ◽  
Ahmed S. Hendy

A numerical solution for neutral delay fractional order partial differential equations involving the Caputo fractional derivative is constructed. In line with this goal, the drift term and the time Caputo fractional derivative are discretized by a finite difference approximation. The energy method is used to investigate the rate of convergence and unconditional stability of the temporal discretization. The interpolation of moving Kriging technique is then used to approximate the space derivative, yielding a meshless numerical formulation. We conclude with some numerical experiments that validate the theoretical findings.



2021 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Monireh Nosrati Sahlan ◽  
Hojjat Afshari ◽  
Jehad Alzabut ◽  
Ghada Alobaidi

In this paper, fractional-order Bernoulli wavelets based on the Bernoulli polynomials are constructed and applied to evaluate the numerical solution of the general form of Caputo fractional order diffusion wave equations. The operational matrices of ordinary and fractional derivatives for Bernoulli wavelets are set via fractional Riemann–Liouville integral operator. Then, these wavelets and their operational matrices are utilized to reduce the nonlinear fractional problem to a set of algebraic equations. For solving the obtained system of equations, Galerkin and collocation spectral methods are employed. To demonstrate the validity and applicability of the presented method, we offer five significant examples, including generalized Cattaneo diffusion wave and Klein–Gordon equations. The implementation of algorithms exposes high accuracy of the presented numerical method. The advantage of having compact support and orthogonality of these family of wavelets trigger having sparse operational matrices, which reduces the computational time and CPU requirements.



Sign in / Sign up

Export Citation Format

Share Document