scholarly journals Application of Perturbation Theory in Heat Flow Analysis

2021 ◽  
Author(s):  
Neelam Gupta ◽  
Neel Kanth

Many physical and engineering problems can be modeled using partial differential equations such as heat transfer through conduction process in steady and unsteady state. Perturbation methods are analytical approximation method to understand physical phenomena which depends on perturbation quantity. Homotopy perturbation method (HPM) was proposed by Ji Huan He. HPM is considered as effective method in solving partial differential equations. The solution obtained by HPM converges to exact solution, which are in the form of an infinite function series. Biazar and Eslami proposed new homotopy perturbation method (NHPM) in which construction of an appropriate homotopy equation and selection of appropriate initial approximation guess are two important steps. In present work, heat flow analysis has been done on a rod of length L and diffusivity α using HPM and NHPM. The solution obtained using different perturbation methods are compared with the solution obtained from most common analytical method separation of variables.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 420-430 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian

AbstractIn this work, the homotopy perturbation method proposed by Ji-Huan He [1] is applied to solve both linear and nonlinear boundary value problems for fourth-order partial differential equations. The numerical results obtained with minimum amount of computation are compared with the exact solution to show the efficiency of the method. The results show that the homotopy perturbation method is of high accuracy and efficient for solving the fourth-order parabolic partial differential equation with variable coefficients. The results show also that the introduced method is a powerful tool for solving the fourth-order parabolic partial differential equations.



Sign in / Sign up

Export Citation Format

Share Document