perturbation methods
Recently Published Documents


TOTAL DOCUMENTS

842
(FIVE YEARS 73)

H-INDEX

52
(FIVE YEARS 2)

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Recommender systems are extensively used today to ease out the problem of information overload and facilitate the product selection by users in e-commerce market. Both privacy and security are two major concerns of the user in these systems. For the protection of the user’s rating, there are several existing works on the basis of encryption or randomization methodologies. This paper proposes a methodology that not only protects the privacy of ratings but also provides better accuracy. After applying fuzzification on the user ratings, random rotation and perturbation methods are used before being fed to the collaborative filtering system. In this process, similar users are grouped into clusters by which recommendation is made. By considering different cluster size on four different datasets, the proposed fuzzified k-Mode clustering method provides less MAE and RMSE value as compared to other k-Means and k-Mode clustering approach and also achieves the better privacy than randomized perturbation method by obtaining IVDM value i.e. 0.67, 0.61, 0.55 and 0.7.


2021 ◽  
Author(s):  
Joseph Mora ◽  
Justin Mibaile ◽  
Vroumsia David ◽  
Sylvere Azakine ◽  
Gambo Betchewe

Abstract In this paper, by means of the expanded Taylor series and Lindstedt-Poincar ́e perturbation methods, the coupled nonlinear Schrödinger equations (CNLSE) modeling the propagation of acoustic waves in acoustic metamaterial is obtained. Using these equations, the Modulational Instability (MI) phenomenon is observed in disturbance mode. Manakov integrable system is derived with suitable parameters and we shown that the Rogue Waves (RWs) can propagate diatomic acoustic metamaterials.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012145
Author(s):  
S Juricic ◽  
S Rouchier ◽  
J Goffart

Abstract Verification of the actual thermal performance of a building envelope after renovation is likely to become a useful key for performance contracting in the frame of heavy retrofit operations in buildings. Some existing methods such as the co-heating method, use on-site measurements to estimate the Heat Transfer Coefficient, or its inverse the overall thermal resistance. Although reliable and accurate, they need several days to several weeks of undisturbed measurements which can be rather inconvenient for building occupants and quite expensive in terms of operational costs. This paper investigates perturbation methods to design a 24-h heat input signal that would ensure an accuracy similar to or better than other perturbation methods to estimate an overall thermal resistance of the building envelope. The paper first studies 256 different squared heating signals in a numerical methodology to determine common characteristics of high-scoring 24-h signals. An experimental campaign in a wooden-framed house tested one of the high-scoring signals. The experimental results showed estimation errors higher than expected but consistent with the literature.


Author(s):  
Junfeng Yan ◽  
Zehao Huang

Abstract An analytical and numerical investigation into pure-slip and stick-slip oscillations induced by dry friction between a rigid mass linked by an inclined spring, modeled by the archetypal self-excited smooth and discontinuous (SD) oscillator, and the classical moving rigid belt, is presented. The friction force between surface contacts is modeled in the sense of Stribeck effect to formulate the friction model that the friction force firstly decreases and then increases with increasing relative sliding speed. Some perturbation methods are considered into this system for establishing the approximate analytical expressions of the occurring conditions, vibration amplitudes, and base frequencies of dry friction-induced stick-slip and pure-slip oscillations. For pure-slip oscillations, two different approaches are applied to analyze this self-excited SD oscillator. One of them is the homotopy perturbation method by constructing the nonlinear amplitude and frequency. Based on the multiple-scales homotopy perturbation method, a nonlinear equation for amplitude of the analytical approximate solution is constructed, which containing all parameters of problem. For stick-slip oscillations, the analytical approximations for amplitude and frequency are obtained by perturbation methods for finite time intervals of the stick phase, which is linked to the subsequent slip phase under the conditions of continuity and periodicity. The accuracy of analytical approximations is verified by the comparison between analytical approximations and numerical simulations. These analytical expressions are needed for gaining a deeper understanding of dry friction-induced pure-slip and stick-slip oscillations for the friction system with geometric nonlinearity.


2021 ◽  
pp. 189-218
Author(s):  
Satyanad Kichenassamy
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunyu A. Duan ◽  
Yuxin Pan ◽  
Guofen Ma ◽  
Taotao Zhou ◽  
Siyu Zhang ◽  
...  

AbstractSurvival in a dynamic environment requires animals to plan future actions based on past sensory evidence, known as motor planning. However, the neuronal circuits underlying this crucial brain function remain elusive. Here, we employ projection-specific imaging and perturbation methods to investigate the direct pathway linking two key nodes in the motor planning network, the secondary motor cortex (M2) and the midbrain superior colliculus (SC), in mice performing a memory-dependent perceptual decision task. We find dynamic coding of choice information in SC-projecting M2 neurons during motor planning and execution, and disruption of this information by inhibiting M2 terminals in SC selectively impaired decision maintenance. Furthermore, we show that while both excitatory and inhibitory SC neurons receive synaptic inputs from M2, these SC subpopulations display differential temporal patterns in choice coding during behavior. Our results reveal the dynamic recruitment of the premotor-collicular pathway as a circuit mechanism for motor planning.


Sign in / Sign up

Export Citation Format

Share Document