scholarly journals p Harmonic Measure in Simply Connected Domains

2011 ◽  
Vol 61 (2) ◽  
pp. 689-715 ◽  
Author(s):  
John L. Lewis ◽  
Kaj Nyström ◽  
Pietro Poggi-Corradini
2019 ◽  
pp. 1-21
Author(s):  
Christina Karafyllia

Abstract Let $D\subset \mathbb{C}$ be a domain with $0\in D$ . For $R>0$ , let $\widehat{\unicode[STIX]{x1D714}}_{D}(R)$ denote the harmonic measure of $D\cap \{|z|=R\}$ at $0$ with respect to the domain $D\cap \{|z|<R\}$ and let $\unicode[STIX]{x1D714}_{D}(R)$ denote the harmonic measure of $\unicode[STIX]{x2202}D\cap \{|z|\geqslant R\}$ at $0$ with respect to $D$ . The behavior of the functions $\unicode[STIX]{x1D714}_{D}$ and $\widehat{\unicode[STIX]{x1D714}}_{D}$ near $\infty$ determines (in some sense) how large $D$ is. However, it is not known whether the functions $\unicode[STIX]{x1D714}_{D}$ and $\widehat{\unicode[STIX]{x1D714}}_{D}$ always have the same behavior when $R$ tends to $\infty$ . Obviously, $\unicode[STIX]{x1D714}_{D}(R)\leqslant \widehat{\unicode[STIX]{x1D714}}_{D}(R)$ for every $R>0$ . Thus, the arising question, first posed by Betsakos, is the following: Does there exist a positive constant $C$ such that for all simply connected domains $D$ with $0\in D$ and all $R>0$ , $$\begin{eqnarray}\unicode[STIX]{x1D714}_{D}(R)\geqslant C\widehat{\unicode[STIX]{x1D714}}_{D}(R)?\end{eqnarray}$$ In general, we prove that the answer is negative by means of two different counter-examples. However, under additional assumptions involving the geometry of $D$ , we prove that the answer is positive. We also find the value of the optimal constant for starlike domains.


2010 ◽  
Vol 348 (9-10) ◽  
pp. 521-524 ◽  
Author(s):  
Stephen J. Gardiner ◽  
Nikolaos Tsirivas

1983 ◽  
Vol 26 (2) ◽  
pp. 189-191
Author(s):  
Dov Aharonov

AbstractLet ƒ be regular univalent and normalized in the unit disc U (i.e. ƒ ∊ S) and continuous on U ∈ T, where T denotes the boundary of U.Recently Essén proved [5] a conjecture of Piranian [7] stating that if the derivative of ƒ ∊ S is bounded in U and ƒ(z1) = ƒ(z2) = … = ƒ(zn) for Zj ∊ T, 1 ≤ j ≤ n, then n ≤ 2. In fact, Essén proved a more general result, using a deep result on harmonic functions. The aim of the following article is to replace Essén's proof by a completely different proof which is based only on Goluzin's inequalities and is much more elementary.


Sign in / Sign up

Export Citation Format

Share Document