A Study on the Drag Reduction Effect and Heat Transfer Enhancement of Non ionized Surfactant and Water Mixture in a Circular Pipe Flow

2007 ◽  
Vol 31 (5) ◽  
pp. 552-557
Author(s):  
Myoung-Jun Kim
Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 656
Author(s):  
Zhangyu Zhu ◽  
Juan Li ◽  
Hao Peng ◽  
Dongren Liu

Heat exchangers are general equipment for energy exchange in the industrial field. Enhancing the heat transfer of a heat exchanger with low pump energy consumption is beneficial to the maximum utilization of energy. The optimization design for enhanced heat transfer structure is an effective method to improve the heat transfer coefficient. Present research shows that the biomimetic structures applied in different equipment could enhance heat transfer and reduce flow resistance significantly. Firstly, six biomimetic structures including the fractal-tree-like structure, conical column structure, hybrid wetting structure, scale structure, concave-convex structure and superhydrophobic micro-nano structure were summarized in this paper. The biomimetic structure characteristics and heat transfer enhancement and drag reduction mechanisms were analyzed. Secondly, four processing methods including photolithography, nanoimprinting, femtosecond laser processing and 3D printing were introduced as the reference of biomimetic structure machining. Finally, according to the systemic summary of the research review, the prospect of biomimetic heat transfer structure optimization was proposed.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

The present study aims at explaining why heat transfer is enhanced in turbulent ribbed-pipe flow, based on our previous large eddy simulation (LES) database (Kang and Yang, 2016, “Characterization of Turbulent Heat Transfer in Ribbed Pipe Flow,” ASME J. Heat Transfer, 138(4), p. 041901) obtained for Re = 24,000, Pr = 0.71, pitch ratio (PR) = 2, 4, 6, 8, 10, and 18, and blockage ratio (BR) = 0.0625. Here, the bulk velocity and the pipe diameter were used as the velocity and length scales, respectively. The ribs were implemented in the cylindrical coordinate system by means of an immersed boundary method. In particular, we focus on the cases of PR ≥ 4 for which heat transfer turns out to be significantly enhanced. Instantaneous flow fields reveal that the vortices shed from the ribs are entrained into the main recirculating region behind the ribs, inducing velocity fluctuations in the vicinity of the pipe wall. In order to identify the turbulence structures responsible for heat transfer enhancement in turbulent ribbed-pipe flow, various correlations among the fluctuations of temperature and velocity components have been computed and analyzed. The cross-correlation coefficient and joint probability density distributions of velocity and temperature fluctuations, obtained for PR = 10, confirm that temperature fluctuation is highly correlated with velocity-component fluctuation, but which component depends upon the axial location of interest between two neighboring ribs. Furthermore, it was found via the octant analysis performed for the same PR that at the axial point of the maximum heat transfer rate, O3 (cold wallward interaction) and O5 (hot outward interaction) events most contribute to turbulent heat flux and most frequently occur.


Sign in / Sign up

Export Citation Format

Share Document