circular pipe
Recently Published Documents


TOTAL DOCUMENTS

905
(FIVE YEARS 99)

H-INDEX

34
(FIVE YEARS 3)

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 1068-1079
Author(s):  
Dabin Yang ◽  
Xiangyi Sun ◽  
Guangen Zhou ◽  
Hongquan Jiang ◽  
Litai Sun ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
pp. 32-38
Author(s):  
Vadym Orel ◽  
◽  
Bohdan Pitsyshyn ◽  
Tetiana Konyk ◽  
◽  
...  

The sizes of the vortex region before the axisymmetric sudden contraction of the circular pipe at the Newtonian flow have been investigated. Area ratios 0.250 and 0.500 were considered. The sizes of the vortex region have the extreme dependence with a maximum at the transition of the laminar flow into a turbulent flow one. When the Reynolds number at the laminar flow increase, these sizes also increase, and they decrease at the turbulent flow. In both cases, the sizes of the vortex region are proportional to the Reynolds number. A transition region between laminar flow and turbulent flow lies in the range of the Reynolds number from 3000 to 5300 and 750…1300, determined by the diameter of a bigger pipe of sudden expansion and a step height correspondingly


2021 ◽  
Vol 932 ◽  
Author(s):  
Pierre Ricco ◽  
Claudia Alvarenga

The development and growth of unsteady three-dimensional vortical disturbances entrained in the entry region of a circular pipe is investigated by asymptotic and numerical methods for Reynolds numbers between $1000$ and $10\,000$ , based on the pipe radius and the bulk velocity. Near the pipe mouth, composite asymptotic solutions describe the dynamics of the oncoming disturbances, revealing how these disturbances are altered by the viscous layer attached to the pipe wall. The perturbation velocity profiles near the pipe mouth are employed as rigorous initial conditions for the boundary-region equations, which describe the flow in the limit of low frequency and large Reynolds number. The disturbance flow is initially primarily present within the base-flow boundary layer in the form of streamwise-elongated vortical structures, i.e. the streamwise velocity component displays an intense algebraic growth, while the cross-flow velocity components decay. Farther downstream the disturbance flow occupies the whole pipe, although the base flow is mostly inviscid in the core. The transient growth and subsequent viscous decay are confined in the entrance region, i.e. where the base flow has not reached the fully developed Poiseuille profile. Increasing the Reynolds number and decreasing the frequency causes more intense perturbations, whereas small azimuthal wavelengths and radial characteristic length scales intensify the viscous dissipation of the disturbance. The azimuthal wavelength that causes the maximum growth is found. The velocity profiles are compared successfully with available experimental data and the theoretical results are helpful to interpret the only direct numerical dataset of a disturbed pipe-entry flow.


Author(s):  
Suguru Miyauchi ◽  
Shuji Yamada ◽  
Shintaro Takeuchi ◽  
Asahi Tazaki ◽  
Takeo Kajishima

AbstractA concise and accurate prediction method is required for membrane permeability in chemical engineering and biological fields. As a preliminary study on this topic, we propose the concentration polarization model (CPM) of the permeate flux and flow rate under dominant effects of viscosity and solute diffusion. In this model, concentration polarization is incorporated for the solution flow through a semi-permeable membrane (i.e., permeable for solvent but not for solute) in a circular pipe. The effect of the concentration polarization on the flow field in a circular pipe under a viscous-dominant condition (i.e., at a low Reynolds number) is discussed by comparing the CPM with the numerical simulation results and infinitesimal Péclet number model (IPM) for the membrane permeability, strength of the osmotic pressure, and Péclet number. The CPM and IPM are confirmed to be a reasonable extension of the model for a pure fluid, which was proposed previously. The application range of the IPM is narrow because the advection of the solute concentration is not considered, whereas the CPM demonstrates superior applicability in a wide range of parameters, including the permeability coefficient, strength of the osmotic pressure, and Péclet number. This suggests the necessity for considering concentration polarization. Although the mathematical expression of the CPM is more complex than that of the IPM, the CPM exhibits a potential to accurately predict the permeability parameters for a condition in which a large permeate flux and osmotic pressure occur.


2021 ◽  
Vol 7 ◽  
pp. 70-82
Author(s):  
Pathiwat Waramit ◽  
Panuwat Chanmak ◽  
Rapeepong Peamsuwan ◽  
Bundit Krittacom

Sign in / Sign up

Export Citation Format

Share Document