scholarly journals Microclimate and mountain pine beetles in two ponderosa pine stands in the Black Hills /

Author(s):  
J. M. Schmid ◽  
S. A. Mata ◽  
W. K. Olsen ◽  
1991 ◽  
Vol 21 (6) ◽  
pp. 750-755 ◽  
Author(s):  
J. M. Schmid ◽  
S. A. Mata ◽  
R. K. Watkins ◽  
M. R. Kaufmann

Water potential was measured in five ponderosa pine (Pinusponderosa Laws.) in each of four stands of different growing-stock levels at two locations in the Black Hills of South Dakota. Mean water potentials at dawn and midday varied significantly among growing-stock levels at one location, but differences were not consistent. Mean dawn and midday water potentials within growing-stock levels significantly decreased during the summer but showed minor increases during the overall decline. Stress levels were considered high enough to influence physiological functioning and, therefore, influence susceptibility to mountain pine beetle (Dendroctonusponderosae Hopk.) attack. Mountain pine beetle infestations did not develop within the stressed stands, which suggests that resistance may be only one factor in the outbreak scenario.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 112 ◽  
Author(s):  
José F. Negrón

The mountain pine beetle (MPB) (Dendroctonus ponderosae) is a bark beetle that attacks and kills ponderosa pine (Pinus ponderosa), among other pine species throughout the western conifer forests of the United States and Canada, particularly in dense stands comprising large trees. There is information on the stand conditions that the insect prefers. However, there is a paucity of information on how small-scale variation in stand conditions influences the distribution of tree mortality within a stand. I examined the small-scale distribution of ponderosa pine basal area pre- and post a mountain pine beetle infestation, and used geostatistical modeling to relate the spatial distribution of the host to subsequent MPB-caused tree mortality. Results indicated increased mortality in the denser parts of the stand. Previous land management has changed historically open low-elevation ponderosa pine stands with aggregated tree distribution into dense stands that are susceptible to mountain pine beetles and intense fires. Current restoration efforts are aimed at reducing tree density and leaving clumps of trees, which are more similar to historical conditions. The residual clumps, however, may be susceptible to mountain pine beetle populations. Land managers will want to be cognizant of how mountain pine beetles will respond to restoration treatments, so as to prevent and mitigate tree mortality that could negate restoration efforts.


2016 ◽  
Author(s):  
Russell T. Graham ◽  
Lance A. Asherin ◽  
Michael A. Battaglia ◽  
Terrie Jain ◽  
Stephen A. Mata

2018 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Kyle Mullen ◽  
Fei Yuan ◽  
Martin Mitchell

The recent and intense outbreak (first decade of 2000s) of the mountain pine beetle in the Black Hills of South Dakota and Wyoming, which impacted over 33% of the 1.2 million acre (486,000 ha) Black Hills National Forest, illustrates what can occur when forest management practices intersect with natural climatic oscillations and climate change to create the “perfect storm” in a region where the physical environment sets the stage for a plethora of economic activities ranging from extractive industries to tourism. This study evaluates the potential of WorldView-2 satellite imagery for green-attacked tree detection in the ponderosa pine forest of the Black Hills, USA. It also discusses the consequences of long term fire policy and climate change, and the use of remote sensing technology to enhance mitigation. It was found that the near-infrared one (band 7) of WorldView-2 imagery had the highest influence on the green-attack classification. The Random Forest classification produced the best results when transferred to the independent dataset, whereas the Logistic Regression models consistently yielded the highest accuracies when cross-validated with the training data. Lessons learned include: (1) utilizing recent advances in remote sensing technologies, most notably the use of WorldView-2 data, to assist in more effectively implementing mitigation measures during an epidemic, and (2) implementing pre-emptive thinning strategies; both of which can be applied elsewhere in the American West to more effectively blunt or preclude the consequences of a mountain pine beetle outbreak on an existing ponderosa pine forest. 


Sign in / Sign up

Export Citation Format

Share Document