scholarly journals PERFORMANCE EVALUATION OF MODULEX TREATMENT PLANNING SYSTEM FOR 10-MV PHOTON BEAM DOSE CALCULATIONS IN THORAX PHANTOMS

1988 ◽  
Vol 44 (12) ◽  
pp. 1715-1718
Author(s):  
TETSUZO NARA
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Monica W. K. Kan ◽  
Peter K. N. Yu ◽  
Lucullus H. T. Leung

Deterministic linear Boltzmann transport equation (D-LBTE) solvers have recently been developed, and one of the latest available software codes, Acuros XB, has been implemented in a commercial treatment planning system for radiotherapy photon beam dose calculation. One of the major limitations of most commercially available model-based algorithms for photon dose calculation is the ability to account for the effect of electron transport. This induces some errors in patient dose calculations, especially near heterogeneous interfaces between low and high density media such as tissue/lung interfaces. D-LBTE solvers have a high potential of producing accurate dose distributions in and near heterogeneous media in the human body. Extensive previous investigations have proved that D-LBTE solvers were able to produce comparable dose calculation accuracy as Monte Carlo methods with a reasonable speed good enough for clinical use. The current paper reviews the dosimetric evaluations of D-LBTE solvers for external beam photon radiotherapy. This content summarizes and discusses dosimetric validations for D-LBTE solvers in both homogeneous and heterogeneous media under different circumstances and also the clinical impact on various diseases due to the conversion of dose calculation from a conventional convolution/superposition algorithm to a recently released D-LBTE solver.


2013 ◽  
Vol 4 (1) ◽  
pp. 43-49
Author(s):  
M Jahangir Alam ◽  
Syed Md Akram Hussain ◽  
Kamila Afroj ◽  
Shyam Kishore Shrivastava

A three dimensional treatment planning system has been installed in the Oncology Center, Bangladesh. This system is based on the Anisotropic Analytical Algorithm (AAA). The aim of this study is to verify the validity of photon dose distribution which is calculated by this treatment planning system by comparing it with measured photon beam data in real water phantom. To do this verification, a quality assurance program, consisting of six tests, was performed. In this program, both the calculated output factors and dose at different conditions were compared with the measurement. As a result of that comparison, we found that the calculated output factor was in excellent agreement with the measured factors. Doses at depths beyond the depth of maximum dose calculated on-axis or off-axis in both the fields or penumbra region were found in good agreement with the measured dose under all conditions of energy, SSD and field size, for open and wedged fields. In the build up region, calculated and measured doses only agree (with a difference 2.0%) for field sizes > 5 × 5 cm2 up to 25 × 25 cm2. For smaller fields, the difference was higher than 2.0% because of the difficulty in dosimetry in that region. Dose calculation using treatment planning system based on the Anisotropic Analytical Algorithm (AAA) is accurate enough for clinical use except when calculating dose at depths above maximum dose for small field size.DOI: http://dx.doi.org/10.3329/bjmp.v4i1.14686 Bangladesh Journal of Medical Physics Vol.4 No.1 2011 43-49


2009 ◽  
Vol 14 (6) ◽  
pp. 214-220 ◽  
Author(s):  
Muhammad Maqbool ◽  
Wazir Muhammad ◽  
Muhammad Shahid ◽  
Misbah Ahmad ◽  
Matiullah Matiullah

Sign in / Sign up

Export Citation Format

Share Document