boltzmann transport
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 182)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhiwei Ding ◽  
Ke Chen ◽  
Bai Song ◽  
Jungwoo Shin ◽  
Alexei A. Maznev ◽  
...  

AbstractSecond sound refers to the phenomenon of heat propagation as temperature waves in the phonon hydrodynamic transport regime. We directly observe second sound in graphite at temperatures of over 200 K using a sub-picosecond transient grating technique. The experimentally determined dispersion relation of the thermal-wave velocity increases with decreasing grating period, consistent with first-principles-based solution of the Peierls-Boltzmann transport equation. Through simulation, we reveal this increase as a result of thermal zero sound—the thermal waves due to ballistic phonons. Our experimental findings are well explained with the interplay among three groups of phonons: ballistic, diffusive, and hydrodynamic phonons. Our ab initio calculations further predict a large isotope effect on the properties of thermal waves and the existence of second sound at room temperature in isotopically pure graphite.


Author(s):  
Yuhong Huang ◽  
Xuanhong Zhong ◽  
Hongkuan Yuan ◽  
Hong Chen

Abstract Thermoelectric performance of MoSi2As4 monolayer is investigated using density functional theory combined with Boltzmann transport theoy. The maximal power factors of n- and p-type by PBE (HSE06) functional are 7.73 (48.31) and 32.84 (30.50) mW m-1 K-2 at the temperature of 1200 K, respectively. The lattice thermal conductivity is less than 30 W m-1 K-1 above 800 K. The thermoelectric figure of merit can reach 0.33 (0.58) and 0.90 (0.81) using PBE (HSE06) functional for n- and p-type under appropriate carrier concentration at 1200K, respectively. Thus, the p-type MoSi2As4 monolayer is predicted to be a potential candidate for high-temperature thermoelectric applications.


Author(s):  
Bindu Rani ◽  
Aadil Wani ◽  
Utkir Sharopov ◽  
Kulwinder Kaur ◽  
Shobhna Dhiman

Half heusler compounds have gained attention due to their excellent properties and good thermal stability. In this paper, using first principle calculation and Boltzmann transport equation, we have investigated structural, electronic, mechanical and thermoelectric properties of PdXSn (X=Zr,Hf) half Heusler materials. These materials are indirect band gap semiconductors with band gap of 0.52 (0.44) for PdZrSn (PdHfSn). Calculations of elastic and phonon characteristics show that both materials are mechanically and dynamically stable. At 300K the magnitude of lattice thermal conductivity observed for PdZrSn is 15.16 W/mK and 9.53 W/mK for PdHfSn. The highest ZT value for PdZrSn and PdHfSn is 0.32 and 0.4 respectively.


Author(s):  
Yishan Wang ◽  
Meng Zhao ◽  
Hu Zhao ◽  
Shuzhou Li ◽  
Jia Zhu ◽  
...  

The potency of charge transfer (CT) salts in thermoelectric (TE) applications based on (5-CNB-EDT-TTF)4I3 is systematically explored by first-principles calculations combined with Boltzmann transport theory and deformation potential theory, focusing...


2021 ◽  
Author(s):  
Nan Lu ◽  
Jie Guan

Abstract We study the thermal and electronic transport properties as well as the TE performance of three two-dimensional XI2 (X = Ge, Sn, Pb) bilayers using density functional theory and Boltzmann transport theory. We compared the lattice thermal conductivity, electrical conductivity, Seebeck coefficient, and dimensionless figure of merit (ZT) for the XI2 monolayers and bilayers. Our results show that the lattice thermal conductivity at room temperature for the bilayers is as low as ~1.1-1.7 Wm-1K-1, which is about 1.6 times as large as the monolayers for all the three materials. Electronic structure calculations show that all the XI2 bilayers are indirect-gap semiconductors with the band gap values between 1.84 eV and 1.96 eV at PBE level, which is similar as the corresponding monolayers. The calculated results of ZT show that the bilayer structures display much less direction dependent TE efficiency and have much larger n-type ZT values compared with the monolayers. The dramatic difference between the monolayer and bilayer indicates that the inter-layer interaction plays an important role in the TE performance of XI2, which provides the tunability on their TE characteristics.


2021 ◽  
Author(s):  
Megha Goyal ◽  
M.M. Sinha

Abstract Heusler compounds are a tuneable class of material with a cubic crystal structure that can serve as a platform to study the topological phase of a material. These materials have numerous technological and scientific applications. So, in the present work, the mechanical, thermodynamical, and thermoelectric properties of LaAuPb in the topological phase have been reported by using density functional theory and Boltzmann transport theory. LaAuPb is mechanically stable, and the Poisson ratio reveals its ductile nature. The specific heat of the proposed compound at room temperature is 73.94 J K-1 mol-1 at constant volume. Debye’s temperature is estimated to be 188.64K. Moreover, the lattice thermal conductivity of the compound is 14.64 W/mK and 3.66 W/mK at 300K and 1200K, respectively. Good thermoelectric response of LaAuPb can be confirmed by its high value of the figure of merit (0.46) at 1200K. Hence, it is a potential material for thermoelectric applications. This work will help future researchers to better understand the stability, nature and behaviour of LaAuPb in material fabrication.


Author(s):  
Shahram Yalameha ◽  
Zahra Nourbakhsh ◽  
Daryoosh Vashaee

Abstract We report the topological phase, thermal, and electrical properties of bialkali bismuthide compounds (Na,K)2RbBi, as yet hypothetical. The topological phase transitions of these compounds under hydrostatic pressure are investigated. The calculated topological surface states and Z2 topological index confirm the nontrivial topological phase. The electronic properties and transport coefficients are obtained using the density functional theory combined with the Boltzmann transport equation. The relaxation times are determined using the deformation potential theory to calculate the electronic thermal and electrical conductivity. The calculated mode Grüneisen parameters are substantial, indicating strong anharmonic acoustic phonons scattering, which results in an exceptionally low lattice thermal conductivity. These compounds also have a favorable thermoelectric power factor leading to a relatively flat p-type figure-of-merit over a broad temperature range. Furthermore, the mechanical properties and phonon band dispersions show that these structures are mechanically and dynamically stable. Therefore, they offer excellent candidates for practical applications over a wide range of temperatures.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1988
Author(s):  
Yang Lin ◽  
Xiaoyu Chong ◽  
Yingchun Ding ◽  
Yunxuan Zhou ◽  
Mengdi Gan ◽  
...  

The adiabatic shear sensitivity of ultra-high-strength steels is closely related to their thermal conductivity. Therefore, it is essential to investigate the effects of alloying elements on the thermal conductivity of ultra-high-strength steel. In this study, the variation in the scattering behavior of electrons with respect to temperature and the mechanism of three-phonon scattering were considered for obtaining the contributions of electrons and phonons, respectively, to the thermal conductivity of alloys while solving the Boltzmann transport equation. By predicting the effect of ten alloying elements on the electronic thermal conductivity (κe), it was found that, at 1200 K, the doping of iron with Ni and Cr endowed iron with κe values of 24.9 and 25.7 W/m K, respectively. In addition, the prediction for the lattice thermal conductivity (κL), which was performed without considering point defect scattering, indicated that elements such as Al, Co, Mn, Mo, V, and Cr demonstrate a positive effect on the lattice thermal conductivity, with values of 3.6, 3.7, 3.0, 3.1, 3.9, and 3.8 W/m K, respectively. The contribution of κL is only 5–15% of the total thermal conductivity (κtotal). The alloying elements exhibited a similar effect on κtotal and κe. Δκi; the change in thermal conductivity with respect to κ0 owing to the alloying element i was evaluated according to the total thermal conductivity. These values were used to understand the effect of the concentration of alloying elements on the thermal conductivity of iron. The Δκi values of Ni, Co, and W were 6.44, 6.80, and 6.06, respectively, indicating a reduction in the thermal conductivity of iron. This paper provides theoretical guidance for the design of ultra-high-strength steels with a high thermal conductivity.


Author(s):  
Nitish Kumar ◽  
Matthew Barry ◽  
Satish Kumar

Abstract Phonon transport  in β-Ga2O3 thin films and metal–oxide field effect transistors (MESFETs) are investigated using non-gray Boltzmann transport equations (BTE) to decipher the effect of  ballistic-diffusive phonon transport. The effects of domain size, and  energy dissipation to various phonon modes and subsequent phonon-phonon energy exchange on the thermal transport and temperature distribution is investigated using non-gray BTE. Our analysis deciphered that domain size plays a major role in thermal transport in β-Ga2O3 but energy dissipation to various phonon modes and subsequent phonon-phonon energy exchange does not affect the temperature field significantly.   Phonon transport in β-Ga2O3 MESFETs on diamond substrate is investigated using coupled non-gray BTE and Fourier model. It is established that the ballistic effects need to be considered for devices with β-Ga2O3 layer thickness less than 1 µm. A non-gray phonon BTE model should be used near hotspot in the thin β-Ga2O3 layer as the Fourier model may not give accurate temperature distribution. The results from this work will help in understanding the mechanism of phonon transport in the β-Ga2O3 thin films and energy efficient design of its FETs.


Sign in / Sign up

Export Citation Format

Share Document