scholarly journals Stanley depth and symbolic powers of monomial ideals

2017 ◽  
Vol 120 (1) ◽  
pp. 5 ◽  
Author(s):  
S. A. Seyed Fakhari

The aim of this paper is to study the Stanley depth of symbolic powers of a squarefree monomial ideal. We prove that for every squarefree monomial ideal $I$ and every pair of integers $k, s\geq 1$, the inequalities $\mathrm{sdepth} (S/I^{(ks)}) \leq \mathrm{sdepth} (S/I^{(s)})$ and $\mathrm{sdepth}(I^{(ks)}) \leq \mathrm{sdepth} (I^{(s)})$ hold. If moreover $I$ is unmixed of height $d$, then we show that for every integer $k\geq1$, $\mathrm{sdepth}(I^{(k+d)})\leq \mathrm{sdepth}(I^{{(k)}})$ and $\mathrm{sdepth}(S/I^{(k+d)})\leq \mathrm{sdepth}(S/I^{{(k)}})$. Finally, we consider the limit behavior of the Stanley depth of symbolic powers of a squarefree monomial ideal. We also introduce a method for comparing the Stanley depth of factors of monomial ideals.

2011 ◽  
Vol 48 (2) ◽  
pp. 220-226
Author(s):  
Azeem Haider ◽  
Sardar Khan

Let S = K[x1,…,xn] be a polynomial ring in n variables over a field K. Stanley’s conjecture holds for the modules I and S/I, when I ⊂ S is a critical monomial ideal. We calculate the Stanley depth of S/I when I is a canonical critical monomial ideal. For non-critical monomial ideals we show the existence of a Stanley ideal with the same depth and Hilbert function.


2017 ◽  
Vol 59 (3) ◽  
pp. 705-715
Author(s):  
S. A. SEYED FAKHARI

AbstractLet $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.


2010 ◽  
Vol 149 (2) ◽  
pp. 229-246 ◽  
Author(s):  
LÊ TUÂN HOA ◽  
TRÂN NAM TRUNG

AbstractLet I, I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp be monomial ideals of a polynomial ring R = K[X1,. . ., Xr] and Ln = I+∩jIn1j + ⋅ ⋅ ⋅ + ∩jIpjn. It is shown that the ai-invariant ai(R/Ln) is asymptotically a quasi-linear function of n for all n ≫ 0, and the limit limn→∞ad(R/Ln)/n exists, where d = dim(R/L1). A similar result holds if I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp are replaced by their integral closures. Moreover all limits $\lim_{n\to\infty} a_i(R/(\cap_j \overline{I_{1j}^n} + \cdots + \cap_j \overline{I_{pj}^n}))/n $ also exist.As a consequence, it is shown that there are integers p > 0 and 0 ≤ e ≤ d = dim R/I such that reg(In) = pn + e for all n ≫ 0 and pn ≤ reg(In) ≤ pn + d for all n > 0 and that the asymptotic behavior of the Castelnuovo–Mumford regularity of ordinary symbolic powers of a square-free monomial ideal is very close to a linear function.


2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Mircea Cimpoeaş

AbstractFor a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1 for any monomial ideal in I ⊂ K[x 1,x 2,x 3].


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 607 ◽  
Author(s):  
S. A. Seyed Fakhari

In 1982, Stanley predicted a combinatorial upper bound for the depth of any finitely generated multigraded module over a polynomial ring. The predicted invariant is now called the Stanley depth. Duval et al. found a counterexample for Stanley’s conjecture, and their counterexample is a quotient of squarefree monomial ideals. On the other hand, there is evidence showing that Stanley’s inequality can be true for high powers of monomial ideals. In this survey article, we collect the recent results in this direction. More precisely, we investigate the Stanley depth of powers, integral closure of powers, and symbolic powers of monomial ideals.


Author(s):  
James Lewis

We investigate the rational powers of ideals. We find that in the case of monomial ideals, the canonical indexing leads to a characterization of the rational powers yielding that symbolic powers of squarefree monomial ideals are indeed rational powers themselves. Using the connection with symbolic powers techniques, we use splittings to show the convergence of depths and normalized Castelnuovo–Mumford regularities. We show the convergence of Stanley depths for rational powers, and as a consequence of this, we show the before-now unknown convergence of Stanley depths of integral closure powers. Additionally, we show the finiteness of asymptotic associated primes, and we find that the normalized lengths of local cohomology modules converge for rational powers, and hence for symbolic powers of squarefree monomial ideals.


2016 ◽  
Vol 60 (1) ◽  
pp. 39-55 ◽  
Author(s):  
Susan M. Cooper ◽  
Robert J. D. Embree ◽  
Huy Tài Hà ◽  
Andrew H. Hoefel

AbstractWe investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal I ⊆ 𝕜[x0, … , xn] we show that for all positive integers m, t and r, where e is the big-height of I and . This captures two conjectures (r = 1 and r = e): one of Harbourne and Huneke, and one of Bocci et al. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.


2015 ◽  
Vol 58 (2) ◽  
pp. 393-401
Author(s):  
Zhongming Tang

AbstractLet S = K[x1 , . . . , xn] be the polynomial ring in n-variables over a ûeld K and I a monomial ideal of S. According to one standard primary decomposition of I, we get a Stanley decomposition of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate the Stanley depth of S/I. It is proved that sdepthS(S/I) ≤ sizeS(I). When I is squarefree and bigsizeS(I) ≤ 2, the Stanley conjecture holds for S/I, i.e., sdepthS(S/I) ≥ depthS(S/I).


Sign in / Sign up

Export Citation Format

Share Document