scholarly journals Pareto optimal control problem and its Galerkin approximation for a nonlinear one-dimensional extensible beam equation

2016 ◽  
Vol 36 (2) ◽  
pp. 239 ◽  
Author(s):  
Andrzej Just ◽  
Zdzislaw Stempień
1973 ◽  
Vol 95 (4) ◽  
pp. 356-361 ◽  
Author(s):  
G. Leitmann ◽  
W. Schmitendorf

We consider the optimal control problem with vector-valued criterion (including cooperative games) and seek Pareto-optimal (noninferior) solutions. Scalarization results, together with modified sufficiency theorems from optimal control theory, are used to deduce sufficient conditions for Pareto-optimality. The utilization of these conditions is illustrated by various examples.


1997 ◽  
Vol 07 (02) ◽  
pp. 437-446 ◽  
Author(s):  
C. Piccardi ◽  
L. L. Ghezzi

Optimal control is applied to a chaotic system. Reference is made to a well-known one-dimensional map. Firstly, attention is devoted to the stabilization of a fixed point. An optimal controller is obtained and compared with other controllers which are popular in the control of chaos. Secondly, allowance is made for uncertainty and emphasis is placed on the reduction rather than the suppression of chaos. The aim becomes that of confining a chaotic attractor within a prescribed region of the state space. A controller fulfilling this task is obtained as the solution of a min-max optimal control problem.


2021 ◽  
Vol 5 (3) ◽  
pp. 102
Author(s):  
Fangyuan Wang ◽  
Xiaodi Li ◽  
Zhaojie Zhou

In this paper spectral Galerkin approximation of optimal control problem governed by fractional advection diffusion reaction equation with integral state constraint is investigated. First order optimal condition of the control problem is discussed. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A priori error estimates for control, state, adjoint state and Lagrangian multiplier are derived. Numerical experiment is carried out to illustrate the theoretical findings.


Author(s):  
G. Yagub ◽  
N. S. Ibrahimov ◽  
M. Zengin

In this paper we consider the optimal control problem for a one-dimensional nonlinear Schrodinger equation with a special gradient term and with a complex coefficient in the nonlinear part, when the quality criterion is a final functional and the controls are quadratically summable functions. In this case, the questions of the correctness of the formulation and the necessary condition for solving the optimal control problem under consideration are investigated. The existence and uniqueness theorem for the solution is proved and a necessary condition is established in the form of a variational inequality. Along with these, a formula is found for the gradient of the considered quality criterion.


Sign in / Sign up

Export Citation Format

Share Document