scholarly journals VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel J Millman ◽  
Gabriel Koch Ocker ◽  
Shiella Caldejon ◽  
India Kato ◽  
Josh D Larkin ◽  
...  

Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.

2019 ◽  
Author(s):  
Daniel J. Millman ◽  
Gabriel Koch Ocker ◽  
Shiella Caldejon ◽  
India Kato ◽  
Josh D. Larkin ◽  
...  

AbstractVasoactive intestinal peptide-expressing (VIP) interneurons in cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Here, we show that VIP neurons in mouse primary visual cortex have complementary contrast tuning to SST neurons and respond synergistically to front-to-back visual motion and locomotion. Network modeling indicates that this VIP-SST mutual antagonism regulates the gain of cortex to achieve both sensitivity to behaviorally-relevant stimuli and network stability.


1997 ◽  
Vol 17 (20) ◽  
pp. 7926-7940 ◽  
Author(s):  
Juan A. Varela ◽  
Kamal Sen ◽  
Jay Gibson ◽  
Joshua Fost ◽  
L. F. Abbott ◽  
...  

2011 ◽  
Vol 105 (1) ◽  
pp. 347-355 ◽  
Author(s):  
Giao B. Hang ◽  
Yang Dan

Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Alicja Kreczko ◽  
Anubhuthi Goel ◽  
Lihua Song ◽  
Hey-Kyoung Lee

Proper functioning of the visual system depends on maturation of both excitatory and inhibitory synapses within the visual cortex. Considering that perisomatic inhibition is one of the key factors that control the critical period in visual cortex, it is pertinent to understand its regulation by visual experience. To do this, we developed an immunohistochemical method that allows three-dimensional (3D) analysis of the glutamic acid decarboxylase (GAD) 65-positive inhibitory terminals in the visual cortex. Using this method on transgenic mice expressing yellow fluorescence protein (YFP) in a subset of neurons, we found that the number of somatic GAD65-puncta on individual layer 2/3 pyramidal neurons is reduced when mice are dark-reared from birth and reverted to normal levels by re-exposure to light. There was no change in GAD65-puncta volume or intensity. These results support the reorganization of inhibitory circuitry within layer 2/3 of visual cortex in response to changes in visual experience.


Author(s):  
Hatim A. Zariwala ◽  
Linda Madisen ◽  
Kurt F. Ahrens ◽  
Amy Bernard ◽  
Edward S. Lein ◽  
...  

2019 ◽  
Vol 1712 ◽  
pp. 124-131 ◽  
Author(s):  
Kayoung Joo ◽  
Kwang-Hyun Cho ◽  
Sung-Hee Youn ◽  
Hyun-Jong Jang ◽  
Duck-Joo Rhie

2020 ◽  
Author(s):  
Liming Tan ◽  
Elaine Tring ◽  
Dario L. Ringach ◽  
S. Lawrence Zipursky ◽  
Joshua T. Trachtenberg

AbstractHigh acuity binocularity is established in primary visual cortex during an early postnatal critical period. In contrast to current models for the developmental of binocular neurons, we find that the binocular network present at the onset of the critical period is dismantled and remade. Using longitudinal imaging of receptive field tuning (e.g. orientation selectivity) of thousands of layer 2/3 neurons through development, we show most binocular neurons present at critical-period onset are poorly tuned and rendered monocular. These are replenished by newly formed binocular neurons that are established by a vision-dependent recruitment of well-tuned ipsilateral inputs to contralateral monocular neurons with matched tuning properties. The binocular network in layer 4 is equally unstable but does not improve. Thus, vision instructs a new and more sharply tuned binocular network in layer 2/3 by exchanging one population of neurons for another and not by refining an extant network.One Sentence SummaryUnstable binocular circuitry is transformed by vision into a network of highly tuned complex feature detectors in the cortex.


Author(s):  
Binghuang Cai ◽  
Yazan N. Billeh ◽  
Selmaan N. Chettih ◽  
Christopher D. Harvey ◽  
Christof Koch ◽  
...  

AbstractInvestigating how visual inputs are encoded in visual cortex is important for elucidating the roles of cell populations in circuit computations. We here use a recently developed, large-scale model of mouse primary visual cortex (V1) and perturb both single neurons as well as functional- and cell-type defined population of neurons to mimic equivalent optogenetic perturbations. First, perturbations were performed to study the functional roles of layer 2/3 excitatory neurons in inter-laminar interactions. We observed activity changes consistent with the canonical cortical model (Douglas and Martin 1991). Second, single neuron perturbations in layer 2/3 revealed a center-surround inhibition-dominated effect, consistent with recent experiments. Finally, perturbations of multiple excitatory layer 2/3 neurons during visual stimuli of varying contrasts indicated that the V1 model has both efficient and robust coding features. The circuit transitions from predominantly broad like-to-like inhibition at high contrasts to predominantly specific like-to-like excitation at low contrasts. These in silico results demonstrate how the circuit can shift from redundancy reduction to robust codes as a function of stimulus contrast.


Sign in / Sign up

Export Citation Format

Share Document