scholarly journals Correction: Metabolic constraints drive self-organization of specialized cell groups

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sriram Varahan ◽  
Adhish Walvekar ◽  
Vaibhhav Sinha ◽  
Sandeep Krishna ◽  
Sunil Laxman
2019 ◽  
Author(s):  
Sriram Varahan ◽  
Adhish Walvekar ◽  
Vaibhhav Sinha ◽  
Sandeep Krishna ◽  
Sunil Laxman

AbstractHow phenotypically distinct states in isogenic cell populations appear and stably co-exist remains an unresolved question. We find that within a clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such assembly. Beginning in a gluconeogenic state, cells in a contrary state, exhibiting high pentose phosphate pathway activity, spontaneously appear and proliferate, in a spatially constrained manner. The gluconeogenic cells in the developing colony produce a resource, which we identify as trehalose. At threshold concentrations of trehalose, cells in the new metabolic state emerge and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.


2019 ◽  
Author(s):  
Sriram Varahan ◽  
Adhish Walvekar ◽  
Vaibhhav Sinha ◽  
Sandeep Krishna ◽  
Sunil Laxman

2019 ◽  
Author(s):  
Sriram Varahan ◽  
Adhish Walvekar ◽  
Vaibhhav Sinha ◽  
Sandeep Krishna ◽  
Sunil Laxman

2007 ◽  
Vol 20 (3) ◽  
pp. 98-108 ◽  
Author(s):  
Nobuhiko Ikeda ◽  
Toyoshi Torioka

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sriram Varahan ◽  
Adhish Walvekar ◽  
Vaibhhav Sinha ◽  
Sandeep Krishna ◽  
Sunil Laxman

How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.


1994 ◽  
Vol 39 (9) ◽  
pp. 916-916
Author(s):  
Terri Gullickson

Sign in / Sign up

Export Citation Format

Share Document