scholarly journals A Privacy Preserving Attribute Based Access Control Mechanism In Distributed Environment for Cloud Storage

2016 ◽  
Vol 5 (2) ◽  
pp. 73-75
Author(s):  
Sneha Lihite ◽  
Bhushan Ugale
2014 ◽  
Vol 26 (4) ◽  
pp. 795-807 ◽  
Author(s):  
Zahid Pervaiz ◽  
Walid G. Aref ◽  
Arif Ghafoor ◽  
Nagabhushana Prabhu

2019 ◽  
Vol 8 (3) ◽  
pp. 6217-6225

Now-a-days the cloud is very useful for providing many IT services. These services are delivered over the internet and accessed globally with the help of internet. The cloud service provider ensures flexibility in provisioning and scaling of resources. The cloud services are completely managed by cloud service provider (CSP), which ensures the end to end availability, reliability and security of the cloud resources. The exponential growth of cloud services has provided many opportunities but has also perplexed severe security concerns. The popularity of cloud service based applications is rapidly increasing due to which many security and legal issues are arising. In this paper we describe the existing access control method and framework for securing cloud services. The concept of modified reputation and attribute based access control system has been discussed. In this approach the concept of crowd reviewing has been used to compute the credit value of users. The simulation experiment has been shown to protect the consistent users and to restrict the access of inconsistent users in cloud environment. It is an access control approach to mitigate the challenges in security concerns. This access control mechanism is helpful for cloud application services, which automatically restrict the malicious users from the access of resources. It is also helpful in authorization of users to access the cloud resources.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1050
Author(s):  
Zhenghao Xin ◽  
Liang Liu ◽  
Gerhard Hancke

This article researched the security and application of smart locks in Internet of Things environments in the domain of computer and engineer science and symmetry. Smart locks bring much convenience for users. However, most smart lock systems are cloud-based and it is problematic managing and enforcing the permissions of an authorized device if the device is offline. Moreover, most smart lock systems lack fine-grained access control and cascading removal of permissions. In this paper, we leverage attribute-based access control mechanisms to manage the access of visitors with different identities. We use identity-based encryption to verify the identity of the visitor. In our proposed system, the administrator uses the policy set in the smart lock to implement access control on the device side, which reduces the dependence of access control on the server. We set attributes such as role, time, date, and location to have fine-grained control over access to different permissions and roles that might appear in the house. And the scheme provides the cascading delete function while providing the group access function. Our solution considers multiple roles in the home as well as hierarchical management issues, and improves the applicability of the smart lock system in complex residential and commercial situations. In the experimental section, we show that our system can be applied to premises with many different inhabitant identities.


2021 ◽  
Vol 13 (6) ◽  
pp. 0-0

The extensive use of digital devices by individuals generates a significant amount of private data which creates challenges for investigation agencies to protect suspects' privacy. Existing digital forensics models illustrate the steps and actions to be followed during an investigation, but most of them are inadequate to investigate a crime with all the processes in an integrated manner and do not protect suspect's privacy. In this paper, we propose the development of a privacy-preserving digital forensics (P2DF) framework, which facilitates investigation through maintaining confidentiality of the suspects through various privacy standards and policies. It includes an access control mechanism which allows only authorized investigators to access private data and identified digital evidences. It is also equipped with a digital evidence preservation mechanism which could be helpful for the court of law to ensure the authenticity, confidentiality, and reliability of the evidences, and to verify whether privacy of the suspect was preserved during the investigation process.


Author(s):  
M Meneka ◽  
K. Meenakshisundaram

To be able to leverage big data to achieve enhanced strategic insight and make informed decision, an efficient access control mechanism is needed for ensuring end to end security of such information asset. Attribute Based Access Control (ABAC), Role Based Access Control (RBAC) and Event Based Access Control (EBAC) are widely used access control mechanisms. The ABAC system is much more complex in terms of policy reviews, hence analyzing the policy and reviewing or changing user permission are quite complex task. RBAC system is labor intensive and time consuming to build a model instance and it lacks flexibility to efficiently adapt to changing user’s, objects and security policies. EBAC model considered only the events to allocate access controls. Yet these mechanisms have limitations and offer feature complimentary to each other. So in this paper, Event-Role-Attribute based fine grained Access Control mechanism is proposed, it provide a flexible boundary which effectively adapt to changing user’s, objects and security policies based on the event. The flexible boundary is achieved by using temporal and environment state of an event. It improves the big data security and overcomes the disadvantages of the ABAC and RBAC mechanisms. The experiments are conducted to prove the effectiveness of the proposed Event-Role-Attribute based Access Control mechanism over ABAC and RBAC in terms of computational overhead.


Sign in / Sign up

Export Citation Format

Share Document