Nonlinear dynamic analysis of jacket-type offshore platform and optimization of leg batter

Author(s):  
R. Senthil ◽  
S. Ishwarya ◽  
M. Arockiasamy
Author(s):  
B. Asgarian ◽  
M. A. Roshandel Tavana ◽  
R. H. Soltani

Offshore platforms in seismically active areas should be designed to survive severe earthquake excitations with no global structural failure. In seismic design of offshore platforms, it is often necessary to perform a dynamic analysis that accounts for nonlinear soil-pile-structures interaction effects. Nonlinear dynamic analysis for offshore structures has been a major challenge in marine structural and earthquake engineering. In this paper, nonlinear dynamic analysis of jacket type offshore platforms considering soil-pile-structure interaction subjected to strong ground motion have been studied. A jacket type offshore platform is included of piles, jacket and topside with different behaviors in seismic loading. Both jacket and pile elements have been modeled using fiber cross-sections. In this paper, free field ground motion analysis with respect to bedrock excitations has been done using nonlinear stress-strain relations for soil. This model has been developed using Open System for Earthquake Engineering Simulation (OpenSEES) software. In this paper, nonlinear seismic response analysis of an existing sample offshore platform in Persian Gulf subjected to strong ground motions in different bedrock depths has been performed and the results in terms of lateral deflections of platform, soil layers displacement-time history and acceleration response spectra of pile head, top of jacket and deck have been presented.


2018 ◽  
Vol 156 ◽  
pp. 351-362 ◽  
Author(s):  
Yi Hui ◽  
Hou Jun Kang ◽  
Siu Seong Law ◽  
Zheng Qing Chen

Sign in / Sign up

Export Citation Format

Share Document