euclidean traveling salesman problem
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

Algorithms ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 5 ◽  
Author(s):  
Víctor Pacheco-Valencia ◽  
José Alberto Hernández ◽  
José María Sigarreta ◽  
Nodari Vakhania

The Traveling Salesman Problem (TSP) aims at finding the shortest trip for a salesman, who has to visit each of the locations from a given set exactly once, starting and ending at the same location. Here, we consider the Euclidean version of the problem, in which the locations are points in the two-dimensional Euclidean space and the distances are correspondingly Euclidean distances. We propose simple, fast, and easily implementable heuristics that work well, in practice, for large real-life problem instances. The algorithm works on three phases, the constructive, the insertion, and the improvement phases. The first two phases run in time O ( n 2 ) and the number of repetitions in the improvement phase, in practice, is bounded by a small constant. We have tested the practical behavior of our heuristics on the available benchmark problem instances. The approximation provided by our algorithm for the tested benchmark problem instances did not beat best known results. At the same time, comparing the CPU time used by our algorithm with that of the earlier known ones, in about 92% of the cases our algorithm has required less computational time. Our algorithm is also memory efficient: for the largest tested problem instance with 744,710 cities, it has used about 50 MiB, whereas the average memory usage for the remained 217 instances was 1.6 MiB.


2018 ◽  
Vol 97 (5) ◽  
Author(s):  
Sergio Caracciolo ◽  
Andrea Di Gioacchino ◽  
Marco Gherardi ◽  
Enrico M. Malatesta

Author(s):  
Satyanarayana G. Manyam ◽  
Sivakumar Rathinam

The Dubins traveling salesman problem (DTSP) has generated significant interest over the last decade due to its occurrence in several civil and military surveillance applications. This problem requires finding a curvature constrained shortest path for a vehicle visiting a set of target locations. Currently, there is no algorithm that can find an optimal solution to the DTSP. In addition, relaxing the motion constraints and solving the resulting Euclidean traveling salesman problem (ETSP) provide the only lower bound available for the DTSP. However, in many problem instances, the lower bound computed by solving the ETSP is far below the cost of the feasible solutions obtained by some well-known algorithms for the DTSP. This paper addresses this fundamental issue and presents the first systematic procedure for developing tight lower bounds for the DTSP.


Sign in / Sign up

Export Citation Format

Share Document