multimodal image fusion
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 71 ◽  
pp. 103214
Author(s):  
Sonal Goyal ◽  
Vijander Singh ◽  
Asha Rani ◽  
Navdeep Yadav

Author(s):  
Hui Zhang ◽  
Xinning Han ◽  
Rui Zhang

In the process of multimodal image fusion, how to improve the visual effect after the image fused, while taking into account the protection of energy and the extraction of details, has attracted more and more attention in recent years. Based on the research of visual saliency and the final action-level measurement of the base layer, a multimodal image fusion method based on a guided filter is proposed in this paper. Firstly, multi-scale decomposition of a guided filter is used to decompose the two source images into a small-scale layer, large-scale layer and base layer. The fusion rule of the maximum absolute value is adopted in the small-scale layer, the weight fusion rule based on regular visual parameters is adopted in the large-scale layer and the fusion rule based on activity-level measurement is adopted in the base layer. Finally, the fused three scales are laminated into the final fused image. The experimental results show that the proposed method can improve the image edge processing and visual effect in multimodal image fusion.


2021 ◽  
Vol 38 (3) ◽  
pp. 607-617
Author(s):  
Sumanth Kumar Panguluri ◽  
Laavanya Mohan

Nowadays multimodal image fusion has been majorly utilized as an important processing tool in various image related applications. For capturing useful information different sensors have been developed. Mainly such sensors are infrared (IR) image sensor and visible (VI) image sensor. Fusing both these sensors provides better and accurate scene information. The major application areas where this fused image has been mostly used are military, surveillance, and remote sensing. For better identification of targets and to understand overall scene information, the fused image has to provide better contrast and more edge information. This paper introduces a novel multimodal image fusion method mainly for improving contrast and as well as edge information. Primary step of this algorithm is to resize source images. The 3×3 sharpen filter and morphology hat transform are applied separately on resized IR image and VI image. DWT transform has been used to produce "low-frequency" and "high-frequency" sub-bands. "Filters based mean-weighted fusion rule" and "Filters based max-weighted fusion rule" are newly introduced in this algorithm for combining "low-frequency" sub-bands and "high-frequency" sub-bands respectively. Fused image reconstruction is done with IDWT. Proposed method has outperformed and shown improved results in subjective manner and objectively than similar existing techniques.


2021 ◽  
pp. 57-68
Author(s):  
Sarmad Maqsood ◽  
Robertas Damasevicius ◽  
Jakub Siłka ◽  
Marcin Woźniak

Sign in / Sign up

Export Citation Format

Share Document