base layer
Recently Published Documents


TOTAL DOCUMENTS

685
(FIVE YEARS 254)

H-INDEX

23
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 621
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

Recycled Excavation Materials (REM) are becoming viable alternative construction resources due to their economic benefits. However, REM may be composed of weak rocks, e.g., phyllites, limiting the use in a base layer. The present paper attempts to further the knowledge of the mechanical performance of REM by performing Repeated Load Triaxial Tests (RLTT). REM are mixed with Recycled Phyllite Materials (RPM) in systematic blends of 0%, 25%, 50%, and 100%. The batches’ resilient modulus (MR) and permanent deformation (PD) characteristics were assessed to establish the maximum RPM allowed into REM while maintaining the required performance. Hicks and Monismith’s and Uzan’s models were used to characterize the stiffness behavior. A wide variation in the stiffness between the two materials was observed. Batches comprised of 0% RPM–100% REM and 25% RPM–75% REM showed high stiffness performance. The Coulomb model assessed the PD behavior, and the results showed a similar response for all batches. Unlike the stiffness, blended mixtures did not show sensitivity to increased RPM content in the PD. This study may help end-users to understand the performance of REM given the documented threshold on the allowable quantity of RPM in REM.


2022 ◽  
Vol 14 (2) ◽  
pp. 708
Author(s):  
Miren Etxeberria ◽  
Mikhail Konoiko ◽  
Carles Garcia ◽  
Miguel Ángel Perez

The use of recycled aggregate to reduce the over-exploitation of raw aggregates is necessary. This study analysed and categorised the properties of water-washed, fine and coarse, recycled aggregates following European Normalization (EN) specification. Because of their adequate properties, zero impurities and chemical soluble salts, plain recycled concrete was produced using 100% recycled concrete aggregates. Two experimental phases were conducted. Firstly, a laboratory phase, and secondly, an on-site work consisting of a real-scale pavement-base layer. The workability of the produced concretes was validated using two types of admixtures. In addition, the compressive and flexural strength, physical properties, drying shrinkage and depth of penetration of water under pressure validated the concrete design. The authors concluded that the worksite-produced concrete properties were similar to those obtained in the laboratory. Consequently, the laboratory results could be validated for large-scale production. An extended slump value was achieved using 2.5–3% of a multifunctional admixture plus 1–1.2% of superplasticiser in concrete production. In addition, all the produced concretes obtained the required a strength of 20 MPa. Although the pavement-base was produced using 300 kg of cement, the concrete made with 270 kg of cement per m3 and water/cement ratio of 0.53 achieved the best properties with the lowest environmental impact.


2022 ◽  
Vol 14 (2) ◽  
pp. 283
Author(s):  
Biao Qi ◽  
Longxu Jin ◽  
Guoning Li ◽  
Yu Zhang ◽  
Qiang Li ◽  
...  

This study based on co-occurrence analysis shearlet transform (CAST) effectively combines the latent low rank representation (LatLRR) and the regularization of zero-crossing counting in differences to fuse the heterogeneous images. First, the source images are decomposed by CAST method into base-layer and detail-layer sub-images. Secondly, for the base-layer components with larger-scale intensity variation, the LatLRR, is a valid method to extract the salient information from image sources, and can be applied to generate saliency map to implement the weighted fusion of base-layer images adaptively. Meanwhile, the regularization term of zero crossings in differences, which is a classic method of optimization, is designed as the regularization term to construct the fusion of detail-layer images. By this method, the gradient information concealed in the source images can be extracted as much as possible, then the fusion image owns more abundant edge information. Compared with other state-of-the-art algorithms on publicly available datasets, the quantitative and qualitative analysis of experimental results demonstrate that the proposed method outperformed in enhancing the contrast and achieving close fusion result.


2022 ◽  
Vol 961 (1) ◽  
pp. 012007
Author(s):  
Hasan H Joni ◽  
Yassir K Hadi

Abstract Due to high temperatures and increased traffic loads, most of Iraq’s streets suffer from permanent distortion problems, especially in streets where there are checkpoints, therefore, there are needs for reports and researches specialized in improving the pavement layers and increasing their resistance to temperatures and high traffic loads to reduce the rut depth. In this research, the VESYS 5W program was used to find a potential value for rut depth, where ordinary asphalt mixes and improved asphalt mixes were used using SBS polymer at 4% by weight of asphalt were it is evaluated according to different properties of these mixture and the resilient modulus one of these properties for it is importance. The results showed that when the value of the resilient modulus increases, the rut depth decreases, as the rut depth was reduced by 42.5% for the surface layer and 73% for the base layer


2022 ◽  
Vol 113 (1) ◽  
pp. 19-34
Author(s):  
V. Sharma ◽  
A. Kumar ◽  
A. Kaur

Purpose: Paper assessed the feasibility of crushed concrete aggregates (CCA), a subsidiary of construction and demolition (C&D) waste, blended with cement and sand to form a composite for civil engineering field applications. Design/methodology/approach: The compaction and strength characteristics of CCA were observed by conducting Proctor compaction and California Bearing Ratio (CBR) tests. Different proportions of CCA, sand and cement were used. Moreover, the effect of curing period (0, 4, 7, 14 and 28 days) was also studied. In addition, regression analyses were performed to develop empirical expressions to predict the compaction and strength characteristics of the CCA composite. Findings: Increasing the CCA content up to 50% increases the maximum dry unit weight (MDUW) and decreases the optimum moisture content (OMC). However, on further increasing its content the MDUW decreases and OMC increases. Percent increase in the CBR value can go up to 412% if the CCA content is increased up to 50%. However, the percent reduction in CBR of about 20% can take place if 100% CCA content is used. Moreover, multiple regression shows that the experimental results are in good agreement with the predicted values. Research limitations/implications: The results obtained are purely dependent on the type of material. However, they are in favour of the used material as a probable option for road sub-base layer, and also for reducing burden on available natural resources. Therefore, it is recommended to conduct some initial tests to confirm the feasibility of the material. Practical implications: The proposed study will guide the design Engineers to choose CCA as one of the potential materials for road construction. Originality/value: It was observed that there is a need to maximize the utilization of C&D waste without making any compromise with its mechanical properties. So keeping that in view, the present study was conducted.


Author(s):  
Hui Zhang ◽  
Xinning Han ◽  
Rui Zhang

In the process of multimodal image fusion, how to improve the visual effect after the image fused, while taking into account the protection of energy and the extraction of details, has attracted more and more attention in recent years. Based on the research of visual saliency and the final action-level measurement of the base layer, a multimodal image fusion method based on a guided filter is proposed in this paper. Firstly, multi-scale decomposition of a guided filter is used to decompose the two source images into a small-scale layer, large-scale layer and base layer. The fusion rule of the maximum absolute value is adopted in the small-scale layer, the weight fusion rule based on regular visual parameters is adopted in the large-scale layer and the fusion rule based on activity-level measurement is adopted in the base layer. Finally, the fused three scales are laminated into the final fused image. The experimental results show that the proposed method can improve the image edge processing and visual effect in multimodal image fusion.


2021 ◽  
Vol 16 (4) ◽  
pp. 126-152
Author(s):  
Kang Yao ◽  
Xin Jiang ◽  
Jin Jiang ◽  
Zhonghao Yang ◽  
Yanjun Qiu

In order to investigate the influence of modulus of the base layer on the strain distribution for asphalt pavement, the modulus ratio of the base layer and the AC layer (Rm) is introduced as a controlled variable when keeping modulus of the AC layer as a constant in this paper. Then, a three-layered pavement structure is selected as an analytical model, which consists of an AC layer with the constant modulus and a base layer with the variable modulus covering the subgrade. A three dimensional (3D) finite element model was established to estimate the strains along the horizontal and vertical direction in the AC layer under different Rm. The results show that Rm will change the distribution of the horizontal strains along the depth in the AC layer; the increase of Rm could reduce the maximum tensile strain in the AC layer, but its effect is limited; the maximum tensile strain in the AC layer does not necessarily occur at the bottom, but gradually rises to the middle with the increase of Rm. Rm could significantly decline the bottom strain in the AC layer, and there is a certain difference between the bottom and the maximum strain when Rm is greater than or equal to one, which will enlarge with increasing Rm. Rm could change the depth of the neutral axis in the AC layer, and the second neutral axis will appear at the bottom of the AC layer under a sufficiently large Rm. The average vertical compressive strain in the AC layer will significantly enlarge with the increase of Rm.


2021 ◽  
Author(s):  
Feng Deng ◽  
Zhong Su ◽  
Rui Wang ◽  
Jun Liu ◽  
Yanzhi Wang

Most of the existing infrared imaging systems employ the scheme of FPGA/FPGA+DSP with numerous peripheral circuits, which leads to complex hardware architecture, limited system versatility, and low computing performance. It has become an intriguing technical problem worldwide to simplify the system structure while improving the imaging performance. In this paper, we present a novel real-time infrared imaging system based on the Rockchip’s RV1108 visual processing SoC (system on chip). Moreover, to address the problem of low contrast and dim details in infrared images with a high dynamic range, an adaptive contrast enhancement method based on bilateral filter is proposed and implemented on the system. First, the infrared image is divided into a base layer and a detail layer through bilateral filter, then the base layer is compressed by an adaptive bi-plateau histogram equalization algorithm, and finally a linear-weighted method is used to integrate the detail layer to obtain the image with enhanced details. The experimental results indicate that compared with traditional algorithms, our method can effectively improve the overall contrast of the image, while effectively retaining the image details without noise magnification. For an image of 320*240 pixels, the real-time processing rate of the system is 68 frames/s. The system has the characteristics of simplified structure, perceptive image details, and high computing performance.


Sign in / Sign up

Export Citation Format

Share Document