countable dense subset
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 21 (2) ◽  
pp. 326
Author(s):  
Angelo Bella ◽  
Michael Hrusak

<p>In this short note we prove the existence (in ZFC) of a completely regular countable disjointly tight irresolvable space by showing that every sub-maximal countable dense subset of 2c is disjointly tight.</p>


2019 ◽  
Vol 40 (9) ◽  
pp. 2467-2481 ◽  
Author(s):  
WEN HUANG ◽  
SONG SHAO ◽  
XIANGDONG YE

In this paper we give an answer to Furstenberg’s problem on topological disjointness. Namely, we show that a transitive system $(X,T)$ is disjoint from all minimal systems if and only if $(X,T)$ is weakly mixing and there is some countable dense subset $D$ of $X$ such that for any minimal system $(Y,S)$, any point $y\in Y$ and any open neighbourhood $V$ of $y$, and for any non-empty open subset $U\subset X$, there is $x\in D\cap U$ such that $\{n\in \mathbb{Z}_{+}:T^{n}x\in U,S^{n}y\in V\}$ is syndetic. Some characterization for the general case is also given. By way of application we show that if a transitive system $(X,T)$ is disjoint from all minimal systems, then so are $(X^{n},T^{(n)})$ and $(X,T^{n})$ for any $n\in \mathbb{N}$. It turns out that a transitive system $(X,T)$ is disjoint from all minimal systems if and only if the hyperspace system $(K(X),T_{K})$ is disjoint from all minimal systems.


Sign in / Sign up

Export Citation Format

Share Document