completely regular
Recently Published Documents


TOTAL DOCUMENTS

586
(FIVE YEARS 60)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Pavel Pal ◽  
Rajlaxmi Mukherjee ◽  
Manideepa Ghosh

As a continuation of the work done in (R. Mukherjee (Pal), P. Pal and S. K. Sardar, On additively completely regular seminearrings, Commun. Algebra 45(12) (2017) 5111–5122), in this paper, our objective is to characterize left (right) completely simple seminearrings in terms of Rees Construction by generalizing the concept of Rees matrix semigroup (J. M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995); M. Petrich and N. R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999)) and that of Rees matrix semiring (M. K. Sen, S. K. Maity and H. J. Weinert, Completely simple semirings, Bull. Calcutta Math. Soc. 97 (2005) 163–172). In Rees theorem, a completely simple semigroup is coordinatized in such a way that each element can be seen to be a triplet which gives this abstract structure a much more simpler look. In this paper, we have been able to construct a similar kind of coordinate structure of a restricted class of left (right) completely simple seminearrings taking impetus from (M. P. Grillet, Semirings with a completely simple additive semigroup, J. Austral. Math. Soc. 20(Ser. A) (1975) 257–267, Theorem [Formula: see text] and (M. K. Sen, S. K. Maity and H. J. Weinert, Completely simple semirings, Bull. Calcutta Math. Soc. 97 (2005) 163–172, Theorem [Formula: see text]).


Author(s):  
M. Ivanov ◽  
P.S. Kenderov ◽  
J.P. Revalski

AbstractLet X be a completely regular topological space and f a real-valued bounded from above lower semicontinuous function in it. Let C(X) be the space of all bounded continuous real-valued functions in X endowed with the usual sup-norm. We show that the following two properties are equivalent: X is α-favourable (in the sense of the Banach-Mazur game); The set of functions h in C(X) for which f + h attains its supremum in X contains a dense and Gδ-subset of the space C(X). In particular, property (b) has place if X is a compact space or, more generally, if X is homeomorphic to a dense Gδ subset of a compact space.We show also the equivalence of the following stronger properties: X contains some dense completely metrizable subset; the set of functions h in C(X) for which f + h has strong maximum in X contains a dense and Gδ-subset of the space C(X). If X is a complete metric space and f is bounded, then the set of functions h from C(X) for which f + h has both strong maximum and strong minimum in X contains a dense Gδ-subset of C(X).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dipankar Dey ◽  
Dhananjay Mandal ◽  
Manabendra Nath Mukherjee

PurposeThe present article deals with the initiation and study of a uniformity like notion, captioned μ-uniformity, in the context of a generalized topological space.Design/methodology/approachThe existence of uniformity for a completely regular topological space is well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a structure on generalized topological space has been developed, to establish the same type of compatibility in the corresponding frameworks.FindingsIt is proved, among other things, that a μ-uniformity on a non-empty set X always induces a generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a μ-proximity, both giving the same generalized topology on the underlying set.Originality/valueIt is an original work influenced by the previous works that have been done on generalized topological spaces. A kind of generalization has been done in this article, that has produced an intermediate structure to the already known generalized topological spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Sehar Shakeel Raina ◽  
A. K. Das

Every topological property can be associated with its relative version in such a way that when smaller space coincides with larger space, then this relative property coincides with the absolute one. This notion of relative topological properties was introduced by Arhangel’skii and Ganedi in 1989. Singal and Arya introduced the concepts of almost regular spaces in 1969 and almost completely regular spaces in 1970. In this paper, we have studied various relative versions of almost regularity, complete regularity, and almost complete regularity. We investigated some of their properties and established relationships of these spaces with each other and with the existing relative properties.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Fabrizio Canfora ◽  
Seung Hun Oh

AbstractTwo analytic examples of globally regular non-Abelian gravitating solitons in the Einstein–Yang–Mills–Higgs theory in (3 + 1)-dimensions are presented. In both cases, the space-time geometries are of the Nariai type and the Yang–Mills field is completely regular and of meron type (namely, proportional to a pure gauge). However, while in the first family (type I) $$X_{0} = 1/2$$ X 0 = 1 / 2 (as in all the known examples of merons available so far) and the Higgs field is trivial, in the second family (type II) $$X_{0} = 1/2$$ X 0 = 1 / 2 is not 1/2 and the Higgs field is non-trivial. We compare the entropies of type I and type II families determining when type II solitons are favored over type I solitons: the VEV of the Higgs field plays a crucial role in determining the phases of the system. The Klein–Gordon equation for test scalar fields coupled to the non-Abelian fields of the gravitating solitons can be written as the sum of a two-dimensional D’Alembert operator plus a Hamiltonian which has been proposed in the literature to describe the four-dimensional Quantum Hall Effect (QHE): the difference between type I and type II solutions manifests itself in a difference between the degeneracies of the corresponding energy levels.


Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


2021 ◽  
Vol 22 (1) ◽  
pp. 47
Author(s):  
Amrita Acharyya ◽  
Sudip Kumar Acharyya ◽  
Sagarmoy Bag ◽  
Joshua Sack

<p>For a completely regular Hausdorff topological space X, let C(X, C) be the ring of complex-valued continuous functions on X, let C ∗ (X, C) be its subring of bounded functions, and let Σ(X, C) denote the collection of all the rings that lie between C ∗ (X, C) and C(X, C). We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/z-ideals/z ◦ -ideals in the rings P(X, C) in Σ(X, C) and in their real-valued counterparts P(X, C) ∩ C(X). These correlations culminate to the fact that the structure space of any such P(X, C) is βX. For any ideal I in C(X, C), we observe that C ∗ (X, C)+I is a member of Σ(X, C), which is further isomorphic to a ring of the type C(Y, C). Incidentally these are the only C-type intermediate rings in Σ(X, C) if and only if X is pseudocompact. We show that for any maximal ideal M in C(X, C), C(X, C)/M is an algebraically closed field, which is furthermore the algebraic closure of C(X)/M ∩C(X). We give a necessary and sufficient condition for the ideal CP (X, C) of C(X, C), which consists of all those functions whose support lie on an ideal P of closed sets in X, to be a prime ideal, and we examine a few special cases thereafter. At the end of the article, we find estimates for a few standard parameters concerning the zero-divisor graphs of a P(X, C) in Σ(X, C).</p>


2021 ◽  
pp. 1-43
Author(s):  
ĽUBOMÍR SNOHA ◽  
VLADIMÍR ŠPITALSKÝ ◽  
MICHAL TAKÁCS

Abstract We characterize dendrites D such that a continuous selfmap of D is generically chaotic (in the sense of Lasota) if and only if it is generically ${\varepsilon }$ -chaotic for some ${\varepsilon }>0$ . In other words, we characterize dendrites on which generic chaos of a continuous map can be described in terms of the behaviour of subdendrites with non-empty interiors under iterates of the map. A dendrite D belongs to this class if and only if it is completely regular, with all points of finite order (that is, if and only if D contains neither a copy of the Riemann dendrite nor a copy of the $\omega $ -star).


Sign in / Sign up

Export Citation Format

Share Document