superquadratic function
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Author(s):  
Mohsen Kian ◽  
Mohammad W. Alomari

We show that if $f$ is a non-negative superquadratic function, then $A\mapsto\mathrm{Tr}f(A)$ is a superquadratic function on the matrix algebra. In particular, \begin{align*} \tr f\left( {\frac{{A + B}}{2}} \right) +\tr f\left(\left| {\frac{{A - B}}{2}}\right|\right) \leq \frac{{\tr {f\left( A \right)} + \tr {f\left( B \right)} }}{2} \end{align*} holds for all positive matrices $A,B$. In addition, we present a Klein's inequality for superquadratic functions as $$ \mathrm{Tr}[f(A)-f(B)-(A-B)f'(B)]\geq \mathrm{Tr}[f(|A-B|)] $$ for all positive matrices $A,B$. It gives in particular improvement of Klein's inequality for non-negative convex function. As a consequence, some variants of the Jensen trace inequality for superquadratic functions have been presented.



Author(s):  
Mohammad W. Alomari

In this work, an operator superquadratic function (in operator sense) for positive Hilbert space operators is defined. Several examples with some important properties together with some observations which are related to the operator convexity are pointed out. Equivalent statements of a non-commutative version of Jensen's inequality for operator superquadratic function are established. A generalization of the main result to any positive unital linear map is also provided.



Sign in / Sign up

Export Citation Format

Share Document