transcriptional silence
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Sutanuka Chakraborty ◽  
Manisha Kabi ◽  
Udaykumar Ranga

ABSTRACT The magnitude of transcription factor binding site variation emerging in HIV-1 subtype C (HIV-1C), especially the addition of NF-κB motifs by sequence duplication, makes the examination of transcriptional silence challenging. How can HIV-1 establish and maintain latency despite having a strong long terminal repeat (LTR)? We constructed panels of subgenomic reporter viral vectors with varying copy numbers of NF-κB motifs (0 to 4 copies) and examined the profile of latency establishment in Jurkat cells. Surprisingly, we found that the stronger the viral promoter, the faster the latency establishment. Importantly, at the time of commitment to latency and subsequent points, Tat levels in the cell were not limiting. Using highly sensitive strategies, we demonstrate the presence of Tat in the latent cell, recruited to the latent LTR. Our data allude, for the first time, to Tat establishing a negative feedback loop during the late phases of viral infection, leading to the rapid silencing of the viral promoter. IMPORTANCE Over the past 10 to 15 years, HIV-1 subtype C (HIV-1C) has been evolving rapidly toward gaining stronger transcriptional activity by sequence duplication of major transcription factor binding sites. The duplication of NF-κB motifs is unique and exclusive to HIV-1C, a property not shared with any of the other eight HIV-1 genetic families. What mechanism(s) does HIV-1C employ to establish and maintain transcriptional silence despite the presence of a strong promoter and concomitant strong, positive transcriptional feedback is the primary question that we attempted to address in the present manuscript. The role that Tat plays in latency reversal is well established. Our work with the most common HIV-1 subtype, HIV-1C, offers crucial leads toward Tat possessing a dual role in serving as both a transcriptional activator and repressor at different phases of viral infection of the cell. The leads that we offer through the present work have significant implications for HIV-1 cure research.


2020 ◽  
Author(s):  
Sutanuka Chakraborty ◽  
Manisha Kabi ◽  
Udaykumar Ranga

AbstractThe magnitude of transcription factor binding site variation emerging in HIV-1C, especially the addition of NF-κB motifs by sequence duplication, makes the examination of transcriptional silence challenging. How can HIV-1 establish and maintain latency despite having a strong LTR? We constructed panels of sub-genomic reporter viral vectors with varying copy numbers of NF-κB motifs (0 to 4 copies) and examined the profile of latency establishment in Jurkat cells. We found surprisingly that the stronger the viral promoter, the faster the latency establishment. Importantly, at the time of commitment to latency and subsequent points, Tat levels in the cell were not limiting. Using highly sensitive strategies, we demonstrate the presence of Tat in the latent cell, recruited to the latent LTR. Our data allude, for the first time, to Tat establishing a negative feedback loop during the late phases of viral infection, leading to the rapid silencing of the viral promoter.ImportanceOver the past 10-15 years, HIV-1C has been evolving rapidly towards gaining stronger transcriptional activity by sequence duplication of major transcription factor binding sites. The duplication of NF-κB motifs is unique and exclusive for HIV-1C, a property not shared with any of the other eight HIV-1 genetic families. What mechanism(s) does HIV-1C employ to establish and maintain transcriptional silence despite the presence of a strong promoter and a concomitant strong, positive transcriptional feedback is the primary question we attempted to address in the present manuscript. The role Tat plays in latency reversal is well established. Our work with the most common HIV-1 subtype C (HIV-1C) offers crucial leads towards Tat possessing a dual-role in serving both as transcriptional activator and repressor at different phases of the viral infection of the cell. The leads we offer through the present work have significant implications for HIV-1 cure research.


Phyton ◽  
2020 ◽  
Vol 89 (3) ◽  
pp. 633-643
Author(s):  
Danni He ◽  
Guoli Deng ◽  
Songpei Ying ◽  
Wenjuan Yang ◽  
Jiali Wei ◽  
...  

Cell ◽  
2010 ◽  
Vol 141 (6) ◽  
pp. 924-926 ◽  
Author(s):  
Michael S.Y. Huen ◽  
Junjie Chen

Zygote ◽  
2006 ◽  
Vol 14 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Kai Wang ◽  
Feng Sun ◽  
Hui Z. Sheng

SummaryTATA binding protein (TBP) associated factor 1 (TAF1) is a member of the general transcription machinery. Interference in the function of TAF1 causes a broad transcriptional defect in early development. To explore possible roles of TAF1 in embryonic transcriptional silence and zygotic genome activation, we examined the expression of TAF1 in 1-cell mouse embryos. Using an immunofluorescence assay, TAF1 was not detected in embryos in the first few hours after fertilization. TAF1 appeared in pronuclei 6 h post-fertilization and reached a relatively high level before zygotic genome activation. These data show that besides TBP, another critical member of the general transcription machinery such as TAF1 is also absent or at an extremely low level at the outset of development. Combined deficiency in critical members of the general transcription machinery may account for embryonic transcriptional silence.


Sign in / Sign up

Export Citation Format

Share Document