Hiv 1
Recently Published Documents


(FIVE YEARS 12504)



2021 ◽  
Vol 11 (1) ◽  
Leonn Mendes Soares Pereira ◽  
Eliane dos Santos França ◽  
Iran Barros Costa ◽  
Igor Tenório Lima ◽  
Amaury Bentes Cunha Freire ◽  

AbstractTo identify the prevalence and risk factors for primary Epstein–Barr virus (EBV) infection in human immunodeficiency virus (HIV)-1-positive adult treatment-naïve patients between January 2018 and December 2019 in a state of the Brazilian Amazon region. A total of 268 HIV-1 positive patients and 65 blood donors participated in the study. Epidemiological data were obtained from medical records and through a designed questionnaire. EBV infection was screened by the semiquantitative detection of anti-viral capsid antigen (VCA) EBV IgM and IgG, followed by molecular detection of the EBNA-3C gene. The plasma viral loads of HIV-1 and EBV were quantified using a commercial kit. The prevalence of primary coinfection was 7.12%. The associated risk factors were education level, family income, history of illicit drug use and sexually transmitted infections, homosexual contact and condom nonuse. Approximately 58.5% had late initiation of highly active antiretroviral therapy, which influenced the risk of HIV-EBV 1/2 multiple infection (odds ratio (OR): 4.76; 95% CI 1.51–15.04) and symptom development (p = 0.004). HIV viral load was associated with patient age (OR: 2.04; 95% CI 2.01–2.07; p = 0.026) and duration of illicit drug use (OR: 1.57; 95% CI 1.12–2.22; p = 0.0548). EBV viral load was associated with younger age (OR: 0.82; 95% CI 0.79–1.03; p = 0.0579). The replication of both viruses was associated with symptom development (HIV = OR: 2.06; 95% CI 1.22–3.50; p = 0.0073; EBV = OR: 8.81; 95% CI 1–10; p = 0.0447). The prevalence of HIV/EBV coinfection was lower than that observed in other studies, and social vulnerability and promiscuous sexual behavior were associated risk factors. A long time of HIV-1 infection, without therapy, influenced the risk of coinfection and disease progression. The viral loads of both viruses may be associated with some epidemiological aspects of the population.

Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Manojkumar Narayanan ◽  
Rutuja Kulkarni ◽  
Shuxian Jiang ◽  
Fatah Kashanchi ◽  
Anil Prasad

Abstract Background Extracellular Vesicles (EV) recently have been implicated in the pathogenesis of HIV-1 syndromes, including neuroinflammation and HIV-1 associated neurological disorder (HAND). Cocaine, an illicit stimulant drug used worldwide is known to exacerbate these HIV-1 associated neurological syndromes. However, the effects of cocaine on EV biogenesis and roles of EVs in enhancing HIV-1 pathogenesis are not yet well defined. Results Here, we investigated the effects of cocaine on EV biogenesis and release in HIV-1 infected immune cells and explored their roles in elicitation of neuroinflammation. We found that cocaine significantly augmented the release of EVs from uninfected and HIV-1 infected T-cells, DCs and macrophages. Further analysis of the molecular components of EVs revealed enhanced expression of adhesion molecules integrin β1 and LFA-1 in those EVs derived from cocaine treated cells. Intriguingly, in EVs derived from HIV-1 infected cells, cocaine treatment significantly increased the levels of viral genes in EVs released from macrophages and DCs, but not in T-cells. Exploring the molecular mechanism to account for this, we found that DCs and macrophages showed enhanced expression of the cocaine receptor Sigma 1-Receptor compared to T-cells. In addition, we found that cocaine significantly altered the integrity of the RNA-induced silencing complex (RISC) in HIV-1 infected macrophages and DCs compared to untreated HIV-1 infected cells. Characterizing further the molecular mechanisms involved in how cocaine increased EV release, we found that cocaine decreased the expression of the interferon-inducible protein BST-2; this resulted in altered trafficking of intracellular virus containing vesicles and EV biogenesis and release. We also observed EVs released from cocaine treated HIV-1 infected macrophages and DCs enhanced HIV-1 trans-infection to T-cells compared to those from untreated and HIV-1 infected cells. These EVs triggered release of proinflammatory cytokines in human brain microvascular endothelial cells (HBMECs) and altered monolayer integrity. Conclusions Taken together, our results provide a novel mechanism which helps to elucidate the enhanced prevalence of neurological disorders in cocaine using HIV-1 infected individuals and offers insights into developing novel therapeutic strategies against HAND in these hosts.

ACS Sensors ◽  
2021 ◽  
Han Wang ◽  
Wenli Huang ◽  
Yunjiao Wang ◽  
Wei Li ◽  
Qianshan Liu ◽  

2021 ◽  
Nozomi Kuse ◽  
Hayato Murakoshi ◽  
Tomohiro Akahoshi ◽  
Takayuki Chikata ◽  
Katherine L James ◽  

Although mutant-specific T-cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T-cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T-cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele, and that HLA-B*35:01-restricted NefYF9(Nef135-143)-specific T-cells failed to recognize target cells infected with Nef135F mutant viruses. Here we investigated HLA-B*35:01-restricted T-cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal TCR clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T-cells (wild type-specific, mutant-specific, and cross-reactive) with different T-cell repertoires were elicited during the clinical course. HLA-B*35:01 + individuals possessing wild type-specific T-cells had a significantly lower pVL than those with mutant-specific and/or cross-reactive T-cells, even though the latter T-cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T-cells could only partially suppress HIV-1 replication in vivo. Ex vivo analysis of the T-cells showed higher expression of PD-1 on cross-reactive T-cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T-cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T-cells. In the present study, we demonstrate that mutant-specific and cross-reactive T-cells do not contribute to suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the co-evolution of HIV-1 alongside virus-specific T-cells, leading to poorer clinical outcomes. Importance HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8 + T-cells. Accumulation of these mutations in circulating viruses impairs control of HIV-1 by HIV-1-specific T-cells. Although it is known that HIV-1-specific T-cells recognizing mutant virus were elicited in some individuals infected with mutant virus, the role of these T-cells remains unclear. Accumulation of Phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T-cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T-cells were elicited in HLA-B*35:01 + individuals infected with Nef135F mutant virus. These T-cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro . Mutant-specific and cross-reactive T-cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T-cells fail to suppress HIV-1 replication in HIV-1-infected individuals.

2021 ◽  
Yusuke Sato ◽  
Akimasa Matsugami ◽  
Satoru Watanabe ◽  
Fumiaki Hayashi ◽  
Munehito Arai ◽  

Hang Su ◽  
Sruthi Sravanam ◽  
Brady Sillman ◽  
Emiko Waight ◽  
Edward Makarov ◽  

2021 ◽  
Susana Bandarra ◽  
Eri Miyagi ◽  
Ana Clara Ribeiro ◽  
João Gonçalves ◽  
Klaus Strebel ◽  

Vif is a lentiviral accessory protein that counteracts the antiviral activity of cellular APOBEC3 cytidine deaminases in infected cells. The exact contribution of each member of the A3 family for the restriction of HIV-2 is still unclear. Thus, the aim of this work was to identify the A3s with anti-HIV-2 activity and compare their restriction potential for HIV-2 and HIV-1. We found that A3G is a strong restriction factor of both types of viruses and A3C restricts neither HIV-1 nor HIV-2. Importantly, A3B exhibited potent antiviral activity against HIV-2 but its effect was negligible against HIV-1. Whereas A3B is packaged with similar efficiency into both viruses in the absence of Vif, HIV-2 and HIV-1 differ in their sensitivity to A3B. HIV-2 Vif targets A3B by reducing its cellular levels and inhibiting its packaging into virions whereas HIV-1 Vif did not evolve to antagonize A3B. Our observations support the hypothesis that during wild-type HIV-1 and HIV-2 infections, both viruses are able to replicate in host cells expressing A3B but using different mechanisms, probably resulting from a Vif functional adaptation over evolutionary time. Our findings provide new insights into the differences between Vif protein and their cellular partner’s in the two human viruses. Of note, A3B is highly expressed in some cancer cells and may cause deamination-induced mutations in these cancers. Thus, A3B may represent an important therapeutic target. As such, the ability of HIV-2 Vif to induce A3B degradation could be an effective tool for cancer therapy. IMPORTANCE Primate lentiviruses encode a series of accessory genes that facilitate virus adaptation to its host. Among those, the vif -encoded protein functions primarily by targeting the APOBEC3 (A3) family of cytidine deaminases. All lentiviral Vif proteins have the ability to antagonize A3G; however, antagonizing other members of the A3 family is variable. Here we report that HIV-2 Vif, unlike HIV-1 Vif, can induce degradation of A3B. Consequently, HIV-2 Vif but not HIV-1 Vif can inhibit the packaging of A3B. Interestingly, while A3B is packaged efficiently into the core of both HIV-1 and HIV-2 virions in the absence of Vif, it only affects the infectivity of HIV-2 particles. Thus, HIV-1 and HIV-2 have evolved two distinct mechanisms to antagonize the antiviral activity of A3B. Aside from its antiviral activity, A3B has been associated with mutations in some cancers. Degradation of A3B by HIV-2 Vif may be useful for cancer therapies.

2021 ◽  
Joan Bacque ◽  
Elena Delgado ◽  
Sonia Benito ◽  
Maria Moreno-Lorenzo ◽  
Vanessa Montero ◽  

Circulating recombinant forms (CRFs) are important components of the HIV-1 pandemic. Among 108 reported in the literature, 17 are BF1 intersubtype recombinant, most of which are of South American origin. Among these, all 5 identified in the Southern Cone and neighboring countries, except Brazil, derive from a common recombinant ancestor related to CRF12_BF, which circulates widely in Argentina, as deduced from coincident breakpoints and clustering in phylogenetic trees. In a HIV-1 molecular epidemiological study in Spain, we identified a phylogenetic cluster of 20 samples from 3 separate regions which were of F1 subsubtype, related to the Brazilian strain, in protease-reverse transcriptase (Pr-RT) and of subtype B in integrase. Remarkably, 14 individuals from this cluster (designated BF9) were Paraguayans and only 4 were native Spaniards. HIV-1 transmission was predominantly heterosexual, except for a subcluster of 6 individuals, 5 of which were men who have sex with men. Ten additional database sequences, from Argentina (n=4), Spain (n=3), Paraguay (n=1), Brazil (n=1), and Italy (n=1), branched within the BF9 cluster. To determine whether it represents a new CRF, near full-length genome (NFLG) sequences were obtained for 6 viruses from 3 Spanish regions. Bootscan analyses showed a coincident BF1 recombinant structure, with 5 breakpoints, located in p17gag, integrase, gp120, gp41-rev overlap, and nef, which was identical to that of two BF1 recombinant viruses from Paraguay previously sequenced in NFLGs. Interestingly, none of the breakpoints coincided with those of CRF12_BF. In a maximum likelihood phylogenetic tree, all 8 NFLG sequences grouped in a strongly supported clade segregating from previously identified CRFs and from the CRF12_BF family clade. These results allow us to identify a new HIV-1 CRF, designated CRF66_BF. Through a Bayesian coalescent analysis, the most recent common ancestor of CRF66_BF was estimated around 1984 in South America, either in Paraguay or Argentina. Among Pr-RT sequences obtained by us from HIV-1-infected Paraguayans living in Spain, 14 (20.9%) of 67 were of CRF66_BF, suggesting that CRF66_BF may be one of the major HIV-1 genetic forms circulating in Paraguay. CRF66_BF is the first reported non-Brazilian South American HIV-1 CRF_BF unrelated to CRF12_BF

2021 ◽  
Tomozumi Imamichi ◽  
John G. Bernbaum ◽  
Sylvain Laverdure ◽  
Jun Yang ◽  
Qian Chen ◽  

Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy naïve patients reported that 14 naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) in HIV derived from anti-retrovirus drugs naïve patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing Met-to-Ile change at codon 50 in integrase (HIV(IN:M50I)) was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P<0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster Resonance Energy Transfer (FRET) assay displayed that GagPol containing IN:M50I forms homodimer with a similar efficiency with GagPol (WT). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase or Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are not only regulated by integrase but also RNase H. Importance A nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by a self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging non-synonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Co-existing other SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.

2021 ◽  
Rajesh Thippeshappa ◽  
Patricia Polacino ◽  
Shaswath S Chandrasekar ◽  
Khanghy Truong ◽  
Anisha Misra ◽  

We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vif-NL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high peak viremia or setpoint plasma viral loads, as observed during SIV infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly four years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic (Vpr- HSIV-vif-NL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts) and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vif-Yu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20 weeks. The passage 3 PTM showed peak viral loads greater than 105 viral RNA copies/ml. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolates C/196 and C/200. The data indicate that the biological isolates selected during long-term infection acquired HIV-1 Vpr expression to enhance their replication fitness in PTMs. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.

Sign in / Sign up

Export Citation Format

Share Document