free probability theory
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Adrian Celestino ◽  
Kurusch Ebrahimi-Fard ◽  
Frédéric Patras ◽  
Daniel Perales

AbstractRelations between moments and cumulants play a central role in both classical and non-commutative probability theory. The latter allows for several distinct families of cumulants corresponding to different types of independences: free, Boolean and monotone. Relations among those cumulants have been studied recently. In this work, we focus on the problem of expressing with a closed formula multivariate monotone cumulants in terms of free and Boolean cumulants. In the process, we introduce various constructions and statistics on non-crossing partitions. Our approach is based on a pre-Lie algebra structure on cumulant functionals. Relations among cumulants are described in terms of the pre-Lie Magnus expansion combined with results on the continuous Baker–Campbell–Hausdorff formula due to A. Murua.


2019 ◽  
Vol 15 (4) ◽  
pp. 3147-3215
Author(s):  
Alice Guionnet ◽  
Roland Speicher ◽  
Dan-Virgil Voiculescu

Author(s):  
Tomohiro Hayase

We investigate parameter identifiability of spectral distributions of random matrices. In particular, we treat compound Wishart type and signal-plus-noise type. We show that each model is identifiable up to some kind of rotation of parameter space. Our method is based on free probability theory.


2019 ◽  
Vol 09 (04) ◽  
pp. 2050013
Author(s):  
Mireille Capitaine

We study the fluctuations associated to the a.s. convergence of the outliers established by Belinschi–Bercovici–Capitaine of an Hermitian polynomial in a complex Wigner matrix and a spiked deterministic real diagonal matrix. Thus, we extend the nonuniversality phenomenon established by Capitaine–Donati-Martin–Féral for additive deformations of complex Wigner matrices, to any Hermitian polynomial. The result is described using the operator-valued subordination functions of free probability theory.


Author(s):  
Serban T Belinschi ◽  
Hari Bercovici ◽  
Mireille Capitaine

Abstract Given a selfadjoint polynomial $P(X,Y)$ in two noncommuting selfadjoint indeterminates, we investigate the asymptotic eigenvalue behavior of the random matrix $P(A_N,B_N)$, where $A_N$ and $B_N$ are independent Hermitian random matrices and the distribution of $B_N$ is invariant under conjugation by unitary operators. We assume that the empirical eigenvalue distributions of $A_N$ and $B_N$ converge almost surely to deterministic probability measures $\mu$ and $\nu$, respectively. In addition, the eigenvalues of $A_N$ and $B_N$ are assumed to converge uniformly almost surely to the support of $\mu$ and $\nu ,$ respectively, except for a fixed finite number of fixed eigenvalues (spikes) of $A_N$. It is known that almost surely the empirical distribution of the eigenvalues of $P(A_N,B_N)$ converges to a certain deterministic probability measure $\eta \ (\textrm{sometimes denoted}\ P^\square(\mu,\nu))$ and, when there are no spikes, the eigenvalues of $P(A_N,B_N)$ converge uniformly almost surely to the support of $\eta$. When spikes are present, we show that the eigenvalues of $P(A_N,B_N)$ still converge uniformly to the support of $\eta$, with the possible exception of certain isolated outliers whose location can be determined in terms of $\mu ,\nu ,P$, and the spikes of $A_N$. We establish a similar result when $B_N$ is replaced by a Wigner matrix. The relation between outliers and spikes is described using the operator-valued subordination functions of free probability theory. These results extend known facts from the special case in which $P(X,Y)=X+Y$.


2018 ◽  
Vol 38 (2) ◽  
pp. 359-384
Author(s):  
Holger Kösters ◽  
Alexander Tikhomirov

For fixed l≥0 and m≥1, let Xn0, Xn1,..., Xnl be independent random n × n matrices with independent entries, let Fn0 := Xn0, Xn1-1,..., Xnl-1, and let Fn1,..., Fnm be independent random matrices of the same form as Fn0 . We show that as n → ∞, the matrices Fn0 and m−l+1/2Fn1 +...+ Fnm have the same limiting eigenvalue distribution. To obtain our results, we apply the general framework recently introduced in Götze, Kösters, and Tikhomirov 2015 to sums of products of independent random matrices and their inverses.We establish the universality of the limiting singular value and eigenvalue distributions, and we provide a closer description of the limiting distributions in terms of free probability theory.


Sign in / Sign up

Export Citation Format

Share Document