irreducibility criteria
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Anca Iuliana Bonciocat ◽  
Nicolae Ciprian Bonciocat ◽  
Yann Bugeaud ◽  
Mihai Cipu


2020 ◽  
Vol 284 ◽  
pp. 107361
Author(s):  
Giovanni Bellettini ◽  
Maurizio Paolini ◽  
Yi-Sheng Wang


2020 ◽  
Vol 97 (3-4) ◽  
pp. 321-337
Author(s):  
Anca Iuliana Bonciocat ◽  
Nicolae Ciprian Bonciocat ◽  
Yann Bugeaud ◽  
Mihai Cipu ◽  
Maurice Mignotte


2019 ◽  
Vol 74 (1) ◽  
Author(s):  
Anca Iuliana Bonciocat ◽  
Nicolae Ciprian Bonciocat




2017 ◽  
Vol 124 (1) ◽  
pp. 37 ◽  
Author(s):  
Antonio Cafure ◽  
Eda Cesaratto


2016 ◽  
Vol 182 (3) ◽  
pp. 499-512 ◽  
Author(s):  
Nicolae Ciprian Bonciocat ◽  
Yann Bugeaud ◽  
Mihai Cipu ◽  
Maurice Mignotte


2016 ◽  
Author(s):  
Morgan Cole ◽  
Scott Dunn ◽  
Michael Filaseta


2015 ◽  
Vol 87 (3-4) ◽  
pp. 255-267 ◽  
Author(s):  
NICOLAE CIPRIAN BONCIOCAT ◽  
YANN BUGEAUD ◽  
MIHAI CIPU ◽  
MAURICE MIGNOTTE


2014 ◽  
Vol 22 (1) ◽  
pp. 73-84
Author(s):  
Anca Iuliana Bonciocat ◽  
Nicolae Ciprian Bonciocat ◽  
Mihai Cipu

AbstractWe provide irreducibility criteria for multiplicative convolutions of polynomials with integer coefficients, that is, for polynomials of the form hdeg f · f(g/h), where f, g, h are polynomials with integer coefficients, and g and h are relatively prime. The irreducibility conditions are expressed in terms of the prime factorization of the leading coefficient of the polynomial hdeg f · f(g/h), the degrees of f, g, h, and the absolute values of their coefficients. In particular, by letting h = 1 we obtain irreducibility conditions for compositions of polynomials with integer coefficients.



Sign in / Sign up

Export Citation Format

Share Document