sard’s theorem
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2018 ◽  
Vol 2020 (20) ◽  
pp. 7073-7096 ◽  
Author(s):  
Paweł Goldstein ◽  
Piotr Hajłasz ◽  
Pekka Pankka
Keyword(s):  
Open Set ◽  

Abstract We prove the following dichotomy: if $n=2,3$ and $f\in C^1(\mathbb{S}^{n+1},\mathbb{S}^n)$ is not homotopic to a constant map, then there is an open set $\Omega \subset \mathbb{S}^{n+1}$ such that $\operatorname{rank} df=n$ on $\Omega $ and $f(\Omega )$ is dense in $\mathbb{S}^n$, while for any $n\geq 4$, there is a map $f\in C^1(\mathbb{S}^{n+1},\mathbb{S}^n)$ that is not homotopic to a constant map and such that $\operatorname{rank} df<n$ everywhere. The result in the case $n\geq 4$ answers a question of Larry Guth.



Author(s):  
Andrew McLennan
Keyword(s):  


2014 ◽  
pp. 431-476
Author(s):  
Rajnikant Sinha
Keyword(s):  




2011 ◽  
Vol 62 (12) ◽  
pp. 1896-1905 ◽  
Author(s):  
K. Eftekharinasab
Keyword(s):  






Author(s):  
Michael Taylor
Keyword(s):  


2005 ◽  
Vol 118 (3) ◽  
pp. 383-397 ◽  
Author(s):  
Bogdan Bojarski ◽  
Piotr Hajłasz ◽  
Paweł Strzelecki


Sign in / Sign up

Export Citation Format

Share Document