marine lake grevelingen
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2018 ◽  
Author(s):  
C. Cassarini ◽  
Y. Zhang ◽  
P. N. Lens

AbstractAnaerobic oxidation of methane (AOM) coupled to sulfate reduction is mediated by, respectively, anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). When a microbial community from coastal marine Lake Grevelingen sediment, containing ANME-3 as the most abundant type of ANME, was incubated under a pressure gradient (0.1-40 MPa) for 77 days, ANME-3 was more pressure sensitive than the SRB. ANME-3 activity was higher at lower (0.1, 0.45 MPa) over higher (10, 20 and 40 MPa) CH4total pressures. Moreover, the sulfur metabolism was shifted upon changing the incubation pressure: only at 0.1 MPa elemental sulfur was detected in a considerable amount and SRB of theDesulfobacteralesorder were more enriched at elevated pressures than theDesulfubulbaceae. This study provides evidence that ANME-3 can be constrained at shallow environments, despite the scarce bioavailable energy, because of its pressure sensitivity. Besides, the association between ANME-3 and SRB can be steered by changing solely the incubation pressure.ImportanceAnaerobic oxidation of methane (AOM) coupled to sulfate reduction is a biological process largely occurring in marine sediments, which contributes to the removal of almost 90% of sedimentary methane, thereby controlling methane emission to the atmosphere. AOM is mediated by slow growing archaea, anaerobic methanotrophs (ANME) and sulfate reducing bacteria. The enrichment of these microorganisms has been challenging, especially considering the low solubility of methane at ambient temperature and pressure. Previous studies showed strong positive correlations between the growth of ANME and the methane pressure, since the higher the pressure the more methane is dissolved. In this research, a shallow marine sediment was incubated under methane pressure gradients. The investigated effect of pressure on the AOM-SR activity, the formation sulfur intermediates and the microbial community structure is important to understand the pressure influence on the processes and the activity of the microorganisms involved to further understand their metabolism and physiology.


Limnology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Susma Bhattarai ◽  
Chiara Cassarini ◽  
Zita Naangmenyele ◽  
Eldon R. Rene ◽  
Graciela Gonzalez-Gil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document