anaerobic oxidation of methane
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 151)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 9 ◽  
Author(s):  
Patrick Meister ◽  
Gerhard Herda ◽  
Elena Petrishcheva ◽  
Susanne Gier ◽  
Gerald R. Dickens ◽  
...  

A numerical reaction-transport model was developed to simulate the effects of microbial activity and mineral reactions on the composition of porewater in a 230-m-thick Pleistocene interval drilled in the Peru-Chile Trench (Ocean Drilling Program, Site 1230). This site has porewater profiles similar to those along many continental margins, where intense methanogenesis occurs and alkalinity surpasses 100 mmol/L. Simulations show that microbial sulphate reduction, anaerobic oxidation of methane, and ammonium release from organic matter degradation only account for parts of total alkalinity, and excess CO2 produced during methanogenesis leads to acidification of porewater. Additional alkalinity is produced by slow alteration of primary aluminosilicate minerals to kaolinite and SiO2. Overall, alkalinity production in the methanogenic zone is sufficient to prevent dissolution of carbonate minerals; indeed, it contributes to the formation of cemented carbonate layers at a supersaturation front near the sulphate-methane transition zone. Within the methanogenic zone, carbonate formation is largely inhibited by cation diffusion but occurs rapidly if cations are transported into the zone via fluid conduits, such as faults. The simulation presented here provides fundamental insight into the diagenetic effects of the deep biosphere and may also be applicable for the long-term prediction of the stability and safety of deep CO2 storage reservoirs.


PLoS Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. e3001508
Author(s):  
Grayson L. Chadwick ◽  
Connor T. Skennerton ◽  
Rafael Laso-Pérez ◽  
Andy O. Leu ◽  
Daan R. Speth ◽  
...  

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


2021 ◽  
Author(s):  
Muhammad Zohaib Nawaz ◽  
Fengping Wang

Abstract Small regulatory RNAs (sRNAs) are present in almost all investigated microbes, regarded as modulators and regulators of gene expression and also known to play their regulatory role in the environmentally significant process. It has been estimated that less than 1% of the microbes in nature are culturable in the laboratory, hindering our understanding of their physiology, and living strategies. However, recent big advancing of DNA sequencing and omics-related data analysis makes the understanding of the genetics, metabolic potentials, even ecological roles of uncultivated microbes possible. In this study, we used a metagenome and metatranscriptome based integrated approach to identifying small RNAs in the microbiome of Guaymas Basin sediments. Hundreds of environmental sRNAs comprising of 228 groups were identified based on their homology, 82% of which displayed high similarity with previously known small RNAs in Rfam database, whereas, “18%” are putative novel sRNA motifs. A putative cis-acting sRNA potentially binding to methyl coenzyme M reductase, a key enzyme in methanogenesis or anaerobic oxidation of methane (AOM), was discovered in the genome of ANaerobic MEthane oxidizing archaea group 1 (ANME-1), which were the dominate microbe in the sample. These sRNAs were actively expressed in local Guaymas Basin hydrothermal environment, suggesting important roles of sRNAs in regulating microbial activity in natural environments.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Vasiliy Aleksandrovich Vavilin

The article analyzes the results of modeling the dynamics of nitrite-dependent methane oxidation (N-DAMO) by Methylomirabilis oxyfera microorganisms using the standard isotope dynamic equations. Without specifying a specific function of the rate of the process, the traditional static Rayleigh equation is derived from the basic dynamic isotope equation. Thus, the equation of the 1st order in terms of the substrate is only a special case in the derivation of the Rayleigh equation. It was shown that the dominant fractionation of carbon isotopes occurs in the process of the microbiological reaction of anaerobic oxidation of methane by nitrite, and not in the physical process of mass transfer of dissolved methane into the gas phase. In contrast to the static Rayleigh equation, the dynamic description of the process of fractionation of stable isotopes is important when describing the parallel transformations of the substrate.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tingcang Hu ◽  
Min Luo ◽  
Yunping Xu ◽  
Shanggui Gong ◽  
Duofu Chen

Cold seeps where methane-rich fluids escape from the seafloor generally support enormous biomass of chemosynthetic organisms and associated fauna. In addition to transporting a great amount of methane toward the seafloor, cold seeps also contribute to the aged, dissolved organic carbon (DOC) pool in the deep ocean. Here, two sediment cores from the “Haima cold seeps,” northern South China Sea and a nearby reference core were analyzed for pore-water sulfate and DOC concentrations, δ13C of DOC, and optical properties of dissolved organic matter (DOM). High DOC concentrations (0.9–3.7 mM) accompanied by extremely low δ13C values (−43.9 to −76.2‰) suggest the conversion of methane into sedimentary DOC pool in the seep sediments. Parallel factor analysis (PARAFAC) of the fluorescence excitation-emission matrices shows higher fluorescent intensities of labile protein-like components (C2 and C4) and lower fluorescent intensities of refractory humic-like components (C1 and C3) in the seep cores compared to the reference core. The intensity of C2 is positively correlated with DOC concentrations and δ13C-DOC in the seep sediments, suggesting that the labile protein-like DOM was produced by the anaerobic oxidation of methane (AOM). Moreover, low humification index (HIX) and high biological index (BIX) values also indicate intensified production of relatively labile DOM with lower degradation degree in the seep cores compared to the reference core. Hence, we highlight that methane-derived DOC may serve as important carbon and energy sources for heterotrophic microbial communities due to its relatively labile nature.


2021 ◽  
Vol 9 (11) ◽  
pp. 2362
Author(s):  
Shahjahon Begmatov ◽  
Alexander S. Savvichev ◽  
Vitaly V. Kadnikov ◽  
Alexey V. Beletsky ◽  
Igor I. Rusanov ◽  
...  

A combination of physicochemical and radiotracer analysis, high-throughput sequencing of the 16S rRNA, and particulate methane monooxygenase subunit A (pmoA) genes was used to link a microbial community profile with methane, sulfur, and nitrogen cycling processes. The objects of study were surface sediments sampled at five stations in the northern part of the Barents Sea. The methane content in the upper layers (0–5 cm) ranged from 0.2 to 2.4 µM and increased with depth (16–19 cm) to 9.5 µM. The rate of methane oxidation in the oxic upper layers varied from 2 to 23 nmol CH4 L−1 day−1 and decreased to 0.3 nmol L−1 day−1 in the anoxic zone at a depth of 16–19 cm. Sulfate reduction rates were much higher, from 0.3 to 2.8 µmol L −1 day −1. In the surface sediments, ammonia-oxidizing Nitrosopumilaceae were abundant; the subsequent oxidation of nitrite to nitrate can be carried out by Nitrospira sp. Aerobic methane oxidation could be performed by uncultured deep-sea cluster 3 of gamma-proteobacterial methanotrophs. Undetectable low levels of methanogenesis were consistent with a near complete absence of methanogens. Anaerobic methane oxidation in the deeper sediments was likely performed by ANME-2a-2b and ANME-2c archaea in consortium with sulfate-reducing Desulfobacterota. Sulfide can be oxidized by nitrate-reducing Sulfurovum sp. Thus, the sulfur cycle was linked with the anaerobic oxidation of methane and the nitrogen cycle, which included the oxidation of ammonium to nitrate in the oxic zone and denitrification coupled to the oxidation of sulfide in the deeper sediments. Methane concentrations and rates of microbial biogeochemical processes in sediments in the northern part of the Barents Sea were noticeably higher than in oligotrophic areas of the Arctic Ocean, indicating that an increase in methane concentration significantly activates microbial processes.


2021 ◽  
Author(s):  
Guangyi Su ◽  
Moritz Lehmann ◽  
Jana Tischer ◽  
Yuki Weber ◽  
Jean-Claude Walser ◽  
...  

Anaerobic oxidation of methane (AOM) with nitrate/nitrite as the terminal electron acceptor may play an important role in mitigating methane emissions from lacustrine environments to the atmosphere. We investigated AOM in the water column of two connected but hydrodynamically contrasting basins of a south-alpine lake in Switzerland (Lake Lugano). The North Basin is permanently stratified with year-round anoxic conditions below 120 m water depth, while the South Basin undergoes seasonal stratification with the development of bottom water anoxia during summer. We show that below the redoxcline of the North Basin a substantial fraction of methane was oxidized coupled to nitrite reduction by Candidatus Methylomirabilis. Incubation experiments with 14CH4 and concentrated biomass from showed at least 43-52%-enhanced AOM rates with added nitrate/nitrite as electron acceptor. Multiannual time series data on the population dynamics of Candidatus Methylomirabilis in the North Basin following an exceptional mixing event in 2005/2006 revealed their requirement for lasting stable low redox-conditions to establish. In the South Basin, on the other hand, we did not find molecular evidence for nitrite-dependent methane oxidizing bacteria. Our data suggest that here the dynamic mixing regime with fluctuating redox conditions is not conducive to the development of a stable population of relatively slow-growing Candidatus Methylomirabilis, despite a hydrochemical framework that seems more favorable for nitrite-dependent AOM than in the North Basin. We predict that the importance of N-dependent AOM in freshwater lakes will likely increase in future because of longer thermal stratification periods and reduced mixing caused by global warming.


Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2439-2466
Author(s):  
Jean-Philippe Blouet ◽  
Patrice Imbert ◽  
Sutieng Ho ◽  
Andreas Wetzel ◽  
Anneleen Foubert

Abstract. The mechanisms that govern the vertical growth of seep carbonates were deciphered by studying the sedimentary architecture of a 15 m thick, 8 m wide column of limestone encased in deep-water marl in the middle Callovian interval of the Terres Noires Formation in the SE France Basin. The limestone body, also called “pseudobioherm”, records intense bioturbation, with predominant traces of the Thalassinoides/Spongeliomorpha suite, excavated by decapod crustaceans. Bioturbation was organized in four tiers. The uppermost tier, tier 1, corresponds to shallow homogenization of rather soft sediment. Tier 2 corresponds to pervasive burrows dominated by large Thalassinoides that were later passively filled by pellets. Both homogenized micrite and burrow-filling pellets are depleted in 13C in the range from −5 ‰ to −10 ‰. Tier 3 is characterized by small Thalassinoides that have walls locally bored by Trypanites; the latter represent tier 4. The diagenetic cements filling the tier-3 Thalassinoides are arranged in two phases. The first cement generation constitutes a continuous rim that coats the burrow wall and has consistent δ13C values of approximately −8 ‰ to −12 ‰, indicative of bicarbonate originating from the anaerobic oxidation of methane. In contrast, the second cement generation is dominated by saddle dolomite precipitated at temperatures >80 ∘C, at a time when the pseudobioherm was deeply buried. The fact that the tubes remained open until deep burial means that vertical fluid communication was possible over the whole vertical extent of the pseudobioherm up to the seafloor during its active development. Therefore, vertical growth was fostered by this open burrow network, providing a high density of localized conduits through the zone of carbonate precipitation, in particular across the sulfate–methane transition zone. Burrows prevented self-sealing from blocking upward methane migration and laterally deflecting fluid flow. One key aspect is the geometric complexity of the burrows with numerous subhorizontal segments that could trap sediment shed from above and, hence, prevent their passive fill.


Sign in / Sign up

Export Citation Format

Share Document