protection of embryos
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 69 (3) ◽  
pp. 653-684
Author(s):  
Rumiana Yotova

AbstractThis article offers a critical assessment of the role of international human rights law in the regulation of genome editing. Given the rapid scientific developments in the field of genetics, it is important to explore the implications of the human rights framework for the research into and the clinical application of genome editing. The broader normative question is whether the existing human rights standards are sufficient to address the challenges posed by this new technology. It will be argued that while international human rights law does not prohibit genome editing, it imposes important restrictions upon it. However, existing human rights are arguably insufficient to regulate germline genome editing as there are significant loopholes in the protection of embryos. Nor do they fully address the wide-ranging implications of the new technology for society and humankind. It will be suggested that new standards are needed, ideally set out in a new international instrument and supported by an institutional framework, which address the specific challenges posed by this new technology.


1998 ◽  
Vol 78 (4) ◽  
pp. 1369-1372 ◽  
Author(s):  
Bruno Pernet

Eggs of the syllid polychaete Atnblyosyllis speciosa are deposited in benthic gelatinous masses. Embryos and larvae develop within these masses until about three weeks after fertilization, after which they crawl or swim away and metamorphose. Only one other syllid, the Mediterranean Syllides edentula, has been reported to form benthic egg masses.While some syllid polychaetes spawn gametes freely into the water column where they are fertilized and develop without additional parental care, most species protect developing embryos in some fashion. Four modes of brood protection have been reported in the syllids. Protection of embryos within the ventral brood chamber of a planktonic adult is characteristic of members of the subfamily Autolytinae, and of some members of the Eusyllinae (Garwood, 1991). Physical attachment of embryos to the body of the maternal parent (external gestation) occurs in all members of the Exogoninae and in a few eusyllines (Heacox & Schroeder, 1978; Garwood, 1991). Viviparity is less common, having been reported in a few species in the subfamily Syllinae (Schroeder & Hermans, 1975; Ben-Eliahu, 1975) and in one exogonine (Pocklington & Hutcheson, 1983). Finally, the formation of benthic egg masses has been described in only one species, the eusylline Syllides edentula Claparède (Cognetti-Varriale, 1971).In this study the benthic egg masses and development of another eusylline, Amblyosyllis speciosa Izuka, 1912, are described. In December 1995, at the Friday Harbor Laboratories (FHL), Washington, USA, five adult worms were found on a bivalve shell heavily infested with the boring sponge Cliona sp. Additional specimens and egg masses were collected in June 1996 and April-June 1997 from encrusting sponges on the FHL breakwater.


Sign in / Sign up

Export Citation Format

Share Document