computably enumerable degree
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2008 ◽  
Vol 73 (4) ◽  
pp. 1373-1388
Author(s):  
Rachel Epstein

AbstractWe examine the computably enumerable (c.e.) degrees of prime models of complete atomic decidable (CAD) theories. A structure has degree d if d is the degree of its elementary diagram. We show that if a CAD theory T has a prime model of c.e. degree c, then T has a prime model of strictly lower c.e. degree b, where, in addition, b is low (b′ = 0′), This extends Csima's result that every CAD theory has a low prime model. We also prove a density result for c.e. degrees of prime models. In particular, if c and d are c.e. degrees with d < c and c not low2 (c″ > 0″), then for any CAD theory T, there exists a c.e. degree b with d < b < c such that T has a prime model of degree b, where b can be chosen so that b′ is any degree c.e. in c with d′ ≤ b′. As a corollary, we show that for any degree c with 0 < c < 0′, every CAD theory has a prime model of low c.e. degree incomparable with c. We show also that every CAD theory has prime models of low c.e. degree that form a minimal pair, extending another result of Csima. We then discuss how these results apply to homogeneous models.


2002 ◽  
Vol 67 (4) ◽  
pp. 1579-1580
Author(s):  
Rodney G. Downey ◽  
Steffen Lempp

A computably enumerable Turing degree a is called contiguous iff it contains only a single computably enumerable weak truth table degree (Ladner and Sasso [2]). In [1], the authors proved that a nonzero computably enumerable degree a is contiguous iff it is locally distributive, that is, for all a1, a2, c with a1 ∪a2 = a and c ≤ a, there exist ci, ≤ ai with c1 ∪ c2 = c.To do this we supposed that W was a computably enumerable set and ∪ a computably set with a Turing functional Φ such that ΦW = U. Then we constructed computably enumerable sets A0, A1 and B together with functionals Γ0, Γ1, Γ, and Δ so thatand so as to satisfy all the requirements below.That is, we built a degree-theoretical splitting A0, A1 of W and a set B ≤TW such that if we cannot beat all possible degree-theoretical splittings V0, V1 of B then we were able to witness the fact that U ≤WW (via Λ).After the proof it was observed that the set U of the proof (page 1222, paragraph 4) needed only to be Δ20. It was then claimed that a consequence to the proof was that every contiguous computably enumerable degree was, in fact, strongly contiguous, in the sense that all (not necessarily computably enumerable) sets of the degree had the same weak truth table degree.


Sign in / Sign up

Export Citation Format

Share Document